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Abstract

This document presents the searches for the flavour-changing neutral current decays
B0

s → μ+μ− and B0
s → φ μ+μ−. A data set with integrated luminosity of 300 pb−1 of

proton-antiproton collisions at
√

s = 1.96 TeV collected with the DØ detector in Run II of
the FERMILAB Tevatron collider is used. The former decay mode is particularly sensitive
to supersymmetric extensions of the Standard Model. For the latter mode, a measure-
ment of the branching ratio could validate the prediction of the Standard Model. In the
absence of an apparent signal, a limit on the branching fraction B(B0

s → μ+μ−) can be
computed by normalising the upper limit on the number of events in the B0

s signal region
to the number of reconstructed B± → J/ψ K± events. An upper limit on the branching
fraction of

B(B0
s → μ+μ−) ≤ 3.7 × 10−7

at a 95% CL is obtained. This limit can be used to constrain models beyond the Standard
Model. In models where the lightest supersymmetric particle is considered to be a dark
matter candidate the limit aids in restricting the dark matter scattering cross section on
nucleons. For the decay B0

s → φ μ+μ− also no signal has been observed and an upper
limit on the branching ratio normalised to B0

s → J/ψ φ events of

B(B0
s → φ μ+μ−)

B(B0
s → J/ψ φ)

< 4.4 × 10−3

at a 95% CL is obtained. In addition, the rare decay B0
s → ψ(2S) φ has been observed.

To measure a branching ratio, the B0
s → J/ψ φ mode was used for normalisation, while

B± → ψ(2S) K± and B± → J/ψ K± modes were used as control samples. The relative
branching ratio has been measured to be

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

= 0.58 ± 0.24 (stat) ± 0.09 (sys).



Zusammenfassung

Die vorliegende Arbeit beschreibt die Suche nach flavour-ändernden neutralen Strömen
der seltenen Zerfälle B0

s → μ+μ− und B0
s → φ μ+μ−. Dazu wurde ein Datensatz mit

einer integrierten Luminosität von 300 pb−1 von Proton-Antiproton-Kollisionen benutzt,
der bei einer Schwerpunktsenergie von

√
s = 1.96 TeV gesammelt wurde. Dieser Daten-

satz wurde mit dem DØ-Detektor im Run II des Tevatron-Beschleunigers aufgezeichnet.
Der Zerfall B0

s → μ+μ− ist besonders auf supersymmetrische Erweiterungen des Stan-
dardmodells der Teilchenphysik sensitiv. Mithilfe des Zerfalls B0

s → φ μ+μ− könnte
durch eine Messung des Verzweigungsverhältnisses die Vorhersage des Standardmodells
überprüft werden. Da in der ersten Suche kein Signal gefunden wurde, kann eine obere
Schranke auf das Verzweigungsverhältnis B(B0

s → μ+μ−) bestimmt werden, indem die
beobachtete Anzahl von Ereignissen in der B0

s Signalregion auf die Anzahl der rekon-
struierten B± → J/ψ K± Ereignisse normiert wird. Es wurde eine obere Grenze auf das
Verzweigungsverhältnis von

B(B0
s → μ+μ−) ≤ 3.7 × 10−7

bei einem Konfidenzniveau (CL) von 95% ermittelt. Diese obere Schranke kann be-
nutzt werden, um mögliche Erweiterungen des Standardmodells der Teilchenphysik aus-
zuschliessen. In bestimmten supersymmetrischen Theorien, in denen das leichteste super-
symmetrische Teilchen ein Kandidat für dunkle Materie darstellt, kann nun der Wechsel-
wirkungsquerschnitt zwischen Nukleonen und dunkler Materie eingeschränkt werden. In
der Suche nach dem Zerfall B0

s → φ μ+μ− wurde ebenfalls kein Signal beobachtet. Da-
her konnte eine obere Schranke auf das Verzweigungsverhältnis normiert auf den Zerfall
B0

s → J/ψ φ von
B(B0

s → φ μ+μ−)

B(B0
s → J/ψ φ)

< 4.4 × 10−3

bei einem CL von 95% ermittelt werden. Ausserdem konnte der seltene Zerfall B0
s →

ψ(2S) φ beobachtet werden. Um ein Verzweigungsverhältnis zu messen, wurde der
Zerfall B0

s → J/ψ φ als Normierung benutzt. Ferner wurden die bekannten Zerfälle
B± → ψ(2S) K± und B± → J/ψ K± als Kontrollkanäle studiert. Das relative Ver-
zweigungsverhältnis wurde schliesslich zu

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

= 0.58 ± 0.24 (stat) ± 0.09 (sys)

bestimmt.
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Introduction

Since the origin of mankind, man has tried to understand its environment and the manifold
processes that are related with it. He has tried to find rules for regularities underlying his
observations. As time evolved the techniques to investigate and describe observation
evolved, too. At all times, the goal was to find one coherent description for all processes.

Today we observe very small as well as very large-scale objects and try to find one
coherent description for both. The very large-scale objects are described by the theory
of gravitation. The very small objects are the subject of the field of particle physics
and the theory which describes best our findings is called the Standard Model of particle
physics. Within the Standard Model, there exist descriptions of the most basic particles
and their properties. Also described are the means by which these particles interact with
each another, giving rise to the forces observed in nature. This approach of predicting
particle interactions has proven to be a very powerful tool for understanding matter on
its most fundamental level. However, the Standard Model is an approximate theory and
is not believed to be the ultimate description of nature. These issues reinforce the belief
that the Standard Model only describes a portion of physics and that a more complete
theory could someday be formulated. Therefore, physicists continue to test the Standard
Model’s predictive ability in an effort to identify physics that cannot be described by the
model. Such searches for new phenomena will continue to expand the unknown horizon
of particle physics.

The most important method for testing the Standard Model is the acceleration of par-
ticles to high energies. If two accelerated particles are collided they can annihilate or
scatter. If the center-of-mass energy of the colliding particles is sufficiently large the re-
sulting annihilation or scattering can create final-state particles that are different from the
original particles. There are two main types of particle accelerators: linear accelerators
and synchrotrons. Linear accelerators are machines which accelerate electrically charged
particles to a specific energy over a straight path. Collisions between particles can be
arranged by directing the particle beams of two opposite-facing linear accelerators at a
single interaction point. Synchrotrons are circular accelerators. Such accelerators allow
for two counter-rotating beams in the accelerator at the same time, and these beams can
be brought into collision at different points along the ring.
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Around the interaction point a detector is built to observe the properties of the new
particles created. The most useful information is the energy and momentum of the final
state particles created in the interaction of the initial particles. The detectors contain sub-
detectors which allow tracking of the particle to measure their direction of flight and their
momentum and calorimetry to measure deposited energies.

This thesis is organised as follows:
The first Chapter provides a brief introduction into the Standard Model. The theoret-

ical background on flavour changing neutral decays of B mesons is given in the second
Chapter.

An overview of the experimental environment, the FERMILAB collider and the DØ de-
tector are presented in Chapter 3. This is followed by an introduction into event recon-
struction and object identification in Chapter 4 and data and event selection in Chapter
5.

The optimisation of the analyses and various multivariate techniques used are pre-
sented in Chapter 6. A short introduction to the calculation of limits using different ap-
proaches is given in Chapter 7.

The analyses are presented in Chapters 8 to 10. In Chapter 8 the search for the rare
flavour changing neutral current decay B0

s → μ+μ− is presented followed by the search
for the rare decay B0

s → φ μ+μ− in Chapter 9. In Chapter 10 the observation of the
decay B0

s → ψ(2S) φ and a measurement of its relative branching ratio with respect to
B0

s → J/ψ φ is presented. This Chapter reports also on the measurement of the relative
branching ratio of B± → ψ(2S) K± with respect to B± → J/ψ K±.

This thesis is concluded with an outlook and a summary.



Chapter 1

Standard Model of Particle Physics

The interactions between the known smallest constituents of matter, namely the quarks
and leptons, are described by the Standard Model1 of particle physics. Although the
Standard Model is very successful in making predictions for physical observables with
high accuracy, it is not thought to be a final theory as it contains many free parameters
whose values cannot be predicted but have to be measured by experiments.

The Standard Model is in fact a composition of two theories: the Glashow-Salam-
Weinberg (GSW) model of electroweak interactions, describing the electromagnetic and
weak forces, and Quantum Chromodynamics (QCD), describing the strong force. Still
separated from the other forces is Gravitation. No quantum field theory has yet been for-
mulated to describe it, the best description being Einstein’s theory of General Relativity.

The Standard Model contains two kinds of fundamental elementary particles: matter
particles and force carriers. The matter particles can be divided into two types of fermions
(particles with intrinsic spin of 1/2): quarks and leptons. These fermions all have mass
and are the constituents of the physical universe. Each fermion has an associated anti-
particle with equal mass and lifetime but opposite charge quantum numbers. The fermions
can be classified in generations according to their rising mass. Corresponding particles
from different generations have different mass but otherwise identical quantum numbers
and interactions. The Standard Model does neither constrain nor predict the number of
generations. Until now three generations have been observed, as shown in Table 1.1.
The force carriers have integral spin and are called bosons. Interactions between the
matter particles are mediated via exchanges of these bosons. These exchanges give rise
to the three Standard Model forces: electromagnetic, weak, and strong. Although not yet
included in the framework of the Standard Model, Gravitation is thought to be mediated
by a massless spin two boson called the graviton. The observed five force carriers are
listed in Table 1.2.

1In the following description of the Standard Model, the conventions of [1] have been used.

3
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Table 1.1: The spin-1/2 particles (fermions) of the Standard Model of particle physics.

Leptons Quarks

Particle Type Symbol Charge Particle Type Symbol Charge
electron neutrino νe 0 up quark u 2/3
electron e -1 down quark d -1/3
muon neutrino νμ 0 charm quark c 2/3
muon μ -1 strange quark s -1/3
tau neutrino ντ 0 top quark t 2/3
tau τ -1 bottom quark b -1/3

Table 1.2: The integral-spin particles (bosons) of the Standard Model of particle physics.

Bosons

Particle Type Symbol Charge Force Mediated
photon γ 0 Electromagnetic
W+ boson W+ +1 Weak
W− boson W− -1 Weak
Z boson Z 0 Weak
gluon g 0 Strong

1.1 Electroweak Interactions within the Standard Model

In the Standard Model, electroweak interactions are described by an SU(2)L ⊗ U(1)Y

gauge theory, combining the two groups SU(2)L of weak isospin and U(1)Y of weak
hypercharge. In this theory, the left-handed fermion fields form weak isospin doublets
while the right-handed components fR are SU(2)R singlets. The first generation can be
represented as (

e

νe

)
L

, eR and
(

u

d

)
L

, uR, dR. (1.1)

This classification ensures that the parity violating V −A structure of the weak interactions
will be obtained. The weak hypercharge Y is related to the electric charge Q and the third
component of the isospin I3 via

Q = I3 +
Y

2
. (1.2)



1.1. Electroweak Interactions within the Standard Model 5

By imposing local gauge invariance on SU(2)L ⊗ U(1)Y the GSW gauge theory is
obtained. The SU(2)L weak isospin gauge group will have three gauge bosons, namely
W 1

μ , W 2
μ and W 3

μ , with one coupling constant g. The U(1)Y hypercharge gauge group will
have one gauge boson Bμ, with a coupling constant g′/2. However, the Lagrangian that is
obtained by requiring this gauge invariance does not describe the electroweak interactions
correctly. Moreover, all gauge bosons and fermions in the theory are massless. This is
obviously not what is observed in nature.

The GSW model addresses the problem of gauge boson masses by introducing an
SU(2) doublet of complex scalar (spin-0) fields to the Standard Model Lagrangian

φ =

(
φ+

φ0

)
with φ+ = (φ1 + iφ2) /

√
2

φ0 = (φ3 + iφ4) /
√

2
(1.3)

which interacts with itself via a potential V (φ) = μ2 φφ + λ
(
φφ

)2. To force non-zero
boson masses, we consider the case of μ2 < 0 and λ > 0, giving V (φ) two minima at
φ0 = ±√−μ2/2λ = ±v. We have the freedom to choose either solution as the ground
state for φ and in this discussion we shall choose the positive solution. We can then rewrite
the scalar field as an excitation relative to this non-zero vacuum expectation value

φ(x) =

√
1

2

(
0

v + h(x)

)
(1.4)

which manifestly breaks the SU(2)L ⊗ U(1)Y gauge symmetry and introduces a single
real scalar field, h(x), which is referred to as the Higgs field. Via interactions with the
Higgs field, the Standard Model Lagrangian obtains a new term which generates the gauge
boson masses.

By defining the orthogonal combinations

W±
μ =

1√
2

(
W 1

μ ∓ iW 2
μ

)
with mW =

v g

2
(1.5)

Z0
μ =

1√
g2 + k2

(
gW 3

μ − g′Bμ

)
with mZ =

v

2

√
g2 + g′2 (1.6)

Aμ =
1√

g2 + g′2
(
g′W 3

μ + gBμ

)
with mA = 0 (1.7)

one can now interpret the weak gauge fields and the photon field. The three extra degrees
of freedom obtained from φ(x) appear as longitudinal polarisations of the original W i

μ

fields, allowing them to become massive. The W±
μ can be identified with the charged W

bosons, the Z0
μ field with the Z0 boson and the Aμ field with the photon. A weak mixing

angle θW

tan θW =
g′

g
, (1.8)
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called Weinberg angle, can be defined, which parametrises the mixing of the neutral gauge
bosons.

The interaction terms in the Lagrangian will give the electromagnetic and weak inter-
actions, whose coupling constants are given as:

e =
gg′√

g2 + g′2 (1.9)

GF =
v√
2

(1.10)

The introduction of the Higgs field, although it spontaneously breaks SU(2)L⊗U(1)Y

symmetry upon the choice of a ground state for the Higgs potential, solves the problem
of weak boson masses while keeping the theory renormalisable. Fermion masses are
obtained in a similar manner through their interactions with the Higgs field. One also
gets a mass term for the Higgs field itself given by mh =

√
2μ2. The only unsatisfactory

feature of this new Higgs field is that its mass is not predicted by the theory, even though
the W± and Z0 boson masses can be determined by measurements of weak decays. Until
now, no experimental evidence has shown any hint that this model may be not complete,
although one crucial component, the Higss boson, has not been experimentally observed.

1.2 Quantum Chromodynamics

The third Standard Model force is the strong force. This force is incorporated into the
Standard Model Lagrangian via the requirement of SU(3) gauge invariance. The funda-
mental representation of this group requires three quantum numbers, which are referred
to as “colours” in the quark sector, thus motivating the name quantum chromodynamics
(QCD). As SU(2) gave rise to 22 − 1 = 3 gauge bosons, QCD adds 32 − 1 = 8 new
fields, referred to as gluons. Quarks are defined as containing one of three colour fields
(chosen as red (r), green (g), and blue (b)), defining three quark and three anti-quark
quantum states. The gluons occupy eight colour states:

rg, rb, gr, gb, br, bg, (rr − gg) /
√

2, and
(
rr + gg − 2bb

)
/
√

6.

These gluons are massless and are the carriers of the strong force. Quarks and anti-quarks
are bound by gluons into colour singlet combinations to form colourless mesons and
hadrons.
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1.3 The CKM Matrix

CP is the combined transformation of the charge conjugation C and the parity transfor-
mation P . The parity transformation is a simple inversion of all space coordinates and
the charge conjugation converts a particle into its antiparticle. In 1957, it was shown that
C and P are separately violated in weak interactions. It was then thought for some time
that the combined operation CP was conserved. However, in 1964, Christenson, Cronin,
Fitch, and Turlay observed [2] CP violation in the neutral Kaon system, by observing the
CP -forbidden two body decay KL → π+π−.

To introduce into the Standard Model a mechanism to generate CP violation
Kobayashi and Maskawa proposed in 1973 [3] the introduction of a third generation of
quarks. The idea was to extend the existing mixing matrix(

d′

s′

)
= U

(
d

s

)
=

(
cos θC sin θC

− sin θC cos θC

)(
d

s

)
(1.11)

with θC the quark mixing angle (also known as Cabibbo angle) from two generations to
three generations. At that time there was evidence for the existance of three quarks only.
The primes in Eq. 1.11 indicate that the weak eigenstates (d′, s′) are not equal to the
corresponding mass eigenstates (d, s), but rather a linear combination of the latter.

As the quark mixing matrix has to be unitary, the complex n × n matrix for n gener-
ations of quarks is initially defined by n2 parameters. After defining the quark phases
(n − 1)2 independent parameters are left. They are split in n(n − 1)/2 angles and
(n − 1)(n − 2)/2 phases. For two quark generations, a single angle, the Cabibbo an-
gle, describes the matrix. For three quark generations, the so called Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix is described by three angles and one phase. To emphasize
the physical transitions associated with the CKM matrix, it is usually written as

VCKM =

⎛
⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠ (1.12)

so that the elements of the matrix are labelled by the quark flavours. The parameterisation
favoured by the Particle Data Group [4] is

VCKM =

⎛
⎝ c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

⎞
⎠ , (1.13)

with cij = cos θij and sij = sin θij . The real angles θij may be chosen such that 0 ≤ θij ≤
π/2, and the phase δ13 such that 0 ≤ δ13 < 2π. In this parameterisation the CKM matrix
is the product of three complex matrices, of which only one has a non-zero phase. This
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has the advantage that each of the rotation angles (θ12, θ23, θ13) relates to the mixing of
two specific generations. The non-zero value of the phase (δ13) causes CP violation in
the weak interactions.

Another convenient parameterisation of the CKM matrix is due to Wolfenstein [5].
It stems from the observation that the measured matrix obeys a hierarchy, with diagonal
elements close to 1, and progressively smaller elements away from the diagonal. This
hierarchy can be formalised by defining λ, A, ρ, and η via

λ ≡ s12 , A ≡ s23/λ
2 , ρ + iη ≡ s13e

iδ13/Aλ3 . (1.14)

From experiment, λ ≈ 0.22, A ≈ 0.8, and
√

ρ2 + η2 ≈ 0.4, and it is phenomenologically
useful to expand VCKM in powers of λ:

VCKM =

⎛
⎝ 1 − 1

2
λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎠ + O(λ4) . (1.15)

The unitarity relation for the CKM matrix (VCKMV †
CKM = V †

CKMVCKM = 1) leads
to nine equations among its elements. Six of these have a result of zero and can be
represented as triangles in the complex plane. Most of the relations yield flat triangles,
except for equations involving the first and the last columns, where the three terms to be
summed are of the same order in λ (O(λ3)):

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

[(ρ + i η) + (−1) + (1 − ρ − i η)]Aλ3 + O(λ5) = 0.
(1.16)

The base of this triangle is usually normalised by dividing the equation by the second term
of Eq. 1.16, VcdV

∗
cb. This yields the so called unitarity triangle with a base of unity, as

illustrated in Figure 1.1. The coordinate of the apex in the Wolfenstein parameterisation
is simply (ρ,η).

1.4 Beyond the Standard Model

The Standard Model has about twenty free parameters that are not fixed by the gauge prin-
ciples. These are the strengths of the gauge couplings, the Yukawa couplings of quarks
and leptons, the mixing angles and the mass of the Higgs particle. The development of
particle physics in the past twenty years was marked by the accurate experimental deter-
mination of most of these parameters. The Standard Model has proven to be a sufficient
theory describing fundamental particles and their interactions up to the energies presently
achievable in an era of precision electroweak measurements. The robustness of this theory
is due largely to the fundamental simplicity it uses to approach a description of matter.
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(1, 0)

VtdV
∗
tb

VcdV
∗
cb

VudV
∗
ub

VcdV
∗
cb

β

α

γ

(ρ, η)

(0, 0)

Figure 1.1: The unitarity triangle.

However, one of the most interesting parameters, the Higgs mass and indeed the Higgs
particle itself have eluded experimental discovery so far. Furthermore, questions about
the origin of the symmetry breaking and the great disparity between the mass scales of
the Standard Model and gravitational interactions lead to believe that the Standard Model
is an effective theory. That is, that at some higher energy scale it will be incorporated in
an even more fundamental theory.

The electroweak theory postulated a single interaction to describe electromagnetic
and weak processes, and spontaneous symmetry breaking to account for their different
strengths in the energy region below the masses of the mediating bosons. The so-called
Grand Unified Theories (GUTs) appeal to a further broken symmetry in order to adapt
the relatively strong coupling of strong interactions at low energies to a unique intrinsic
coupling for all three interactions at the unification energy. There are many ways in which
the SU(2)L, U(1)Y and SU(3) symmetries could be incorporated into a more global
gauge symmetry. The simplest is the SU(5) group proposed by Georgi and Glashow [6].
This incorporates the known fermions in multiplets, inside which quarks can transform
to leptons and antiquarks, via the mediation of very massive (1015 GeV/c2) bosons called
X and Y . In this model there are a total of 24 gauge bosons, the Standard Model ones,
plus 12 varieties of X and Y . The model makes a number of predictions, for example the
decay of the proton which has not been observed.

Another approach is Supersymmetry (SUSY) which provides a stabilisation of the
Higgs sector at high energies and solves the hierarchy problem in the gauge sector. Fur-
thermore, it predicts a light dark matter candidate. This model introduces a symmetry
relating particles of different spin, i.e., fermions and bosons. Particles are combined in a
superfield containing two fields differing by one-half unit of spin. Thus, each fermion of
the Standard Model is given a bosonic superpartner (forming a chiral superfield) and each
boson of the Standard Model is given a fermionic superpartner (forming a vector super-
field). Particles in a superfield have the same masses and quantum numbers aside from
the 1/2 unit of spin. This is a problem as no scalar particles with the (small) masses of the
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Standard Model leptons have been observed, directly or indirectly. Thus, SUSY must be
a broken symmetry, and the mechanism for this symmetry breaking is not well described.
The currently accepted means of breaking the symmetry requires the superpartners to
the Standard Model particles to have masses less than roughly 1 TeV. Furthermore, the
simplest anomaly-free SUSY model requires two SU(2) Higgs-type doublets of complex
scalar fields, therefore predicting not one but five scalar Higgs fields. This introduces a
second unpredicted parameter to the Higgs sector namely the ratio of the vacuum expec-
tation values (tan β = v1/v2) for the two Higgs doublets. Despite its deficiencies, SUSY
provides a badly needed substructure for a Standard Model-like gauge field theory. The
predictions of this model provide an excitingly rich array of new physics which can be
tested at energies in the TeV scale.



Chapter 2

Flavour-Changing Neutral Current
Decays of B Mesons

2.1 Introduction

Flavour-changing neutral current (FCNC) transitions, such as b → s and b → d, are for-
bidden in the Standard Model of electroweak interactions at tree level. They can proceed
at very low rate through higher order box and penguin diagrams.

In the Standard Model, neutral currents are flavour conserving. The unitarity of the
CKM matrix ensures that. There is no direct coupling between the b and the s or d quarks.
If all quarks of same isospin were of equal mass, higher order processes would also can-
cel, as explained by the Glashow-Iliopoulos-Maiani (GIM) mechanism [7], and FCNC
processes would not exist at any order. Thus, in the B system, consisting of a heavy b
quark and a light u, d, or s anti-quark, it is due to the high mass of the top quark and the
fact that the coupling of the b quark to the t quark is close to unity, that these processes
are not entirely negligible. Moreover, their relative importance is enhanced by the small
coupling of the b quark to the c quark, Vcb, which suppresses the otherwise CKM-favoured
tree diagram decays. Precision measurements of these rare FCNC processes represent a
sensitive probe for new physics, as many processes of extensions to the Standard Model
enhance or suppress FCNC decay rates. This permits to indirectly probe these models
while measurements of direct effects could still be beyond reach at present day accelera-
tors.

In the following, a brief overview of the theoretical framework of FCNC decays will
be given. An in-depth review by Buras and Fleischer [8] and the references therein give a
good introduction into this subject.

11



12 Chapter 2. Flavour-Changing Neutral Current Decays of B Mesons

2.2 Theoretical Framework

2.2.1 Effective FCNC Vertices

At the one loop level, new structures appear which were absent at tree level. Amongst
these are the flavour-changing neutral current transitions which can be summarised by
a set of basic triple and quartic effective vertices. In the literature they appear under
the names of penguin and box diagrams, respectively. Typical diagrams are depicted in
Figure 2.1.

W−

γ, Z

tt

b s

W−

g

tt

b s
d

b̄

b
W−

ū, c̄, t̄

W+

u, c, t

d̄

Figure 2.1: Example of penguin and box diagrams

These effective vertices can be calculated by using elementary vertices and propaga-
tors, and effective “Feynman rules” can be derived [8]. The higher order in the gauge
couplings contributes to the suppression of these diagrams. Their relative importance de-
pends on the mass of the internal fermion lines, which explains the importance of the
contribution of the top quark, and on the relevant CKM matrix element.

2.2.2 Operator Product Expansion Approach

To predict the decay rate of a given meson M into some final state f , one must calculate
the transition amplitude M for M → f . In general there are many contributions to M,
each of which is at the quark level represented by Feynman diagrams.

The most often used theoretical tool to calculate decay rates for FCNC decays is the
Operator Product Expansion approach (OPE). The basic idea behind the OPE approach is
that the energy scale of the relevant interactions (weak decays of hadrons containing u, d,
s, c and b quarks) is low compared to the mass of the propagator, the W boson. As the W
boson propagator is of the form 1

q2−M2
W

(where q is the momentum transferred by the W

boson), the amplitude can be written as an expansion in terms of q2/M2
W . Schematically

the decay amplitude M is then expressed as

M = −4 GF√
2

VCKM

∑
j

Cj(μ) 〈f |Qj(μ)|M〉
[
1 + O

(
q2

M2
W

)]
, (2.1)
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where μ is a renormalisation scale. Physics from distances shorter than μ−1 is contained
in the Wilson coefficients Cj , and physics from distances longer than μ−1 is accounted for
by the hadronic matrix elements 〈f |Qj|B〉 of the local operators Qj . In principle, there
are infinitely many terms in the OPE, but higher dimension operators yield contributions
suppressed by powers of q2/m2

W . Therefore, when calculating a decay amplitude, terms
with O(q2/M2

W ) and higher can be neglected. This is equivalent to writing an effective
Hamiltonian, Heff , where the short range contributions of a heavy boson can be replaced
by a point-like interaction. To get Heff , the product of two charged-current operators is
expanded in a series of local operators. The contribution of these operators is weighted
by effective coupling terms, called Wilson coefficients. Heff can then be written as

Heff = −4 GF√
2

VCKM

∑
j

Cj(μ)Qj, (2.2)

where Qj are the local operators and Cj the Wilson coefficients.

This approach factorises the problem into two parts. Low-energy (long-distance)
interactions (hadronisation effects) are contained in the operators. High-energy (short-
distance) interactions (hard gluon exchanges) are represented by the Wilson coefficients.
The renormalisation scale μ represents the limit between the two different regimes. For
B decays it is chosen to be at the order of a few GeV. The Wilson coefficients are func-
tions of the strong coupling constant αs, MW and μ. They are calculated perturbatively
at μW = MW and then evolved to the chosen low-energy scale μ using renormalisation
group equations. At μW perturbative calculations can be made, as the effective QCD
couplings are small.

2.2.3 Effective Hamiltonian

The similarity of FCNC processes, in decays or mixing, allows to describe all of them
with a set of basic effective vertices. The effective Hamiltonian for FCNC decays can
then be written as an expansion in terms of the four-fermion local operators that describe
these effective vertices. These local operators can be classified in six classes [8]

Current–Current (Figure 2.2a):

Q1 = (s̄LβγμcLα) (c̄LαγμbLβ)

Q2 = (s̄LγμcL) (c̄LγμbL)
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a)

W

c

ū

b

s̄

W

c

ū

b

s̄

g

b)
s

q̄

b

g

W−

u, c, tu, c, tu, c, t

q̄

c)
s

q̄

b

q̄

γ/Z

W−
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s

q̄

b
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γ/Z

W− W−

u, c, t

d)
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γ/Z

W− W−

u, c, t
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g

W−

u, c, tu, c, tu, c, t

e)
s

b̄

b

d̄

W−

u, c, t

W+

u, c, t

f)
s

l+

b

l+

γ/Z

W−

u, c, tu, c, tu, c, t

Figure 2.2: Typical diagrams for FCNC decays for the six different classes as described
in the text.
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QCD–Penguins (Figure 2.2b):

Q3 = (s̄LγμbL)
∑

q=u,d,s,c,b

(q̄γμq)

Q4 = (s̄LαγμbLβ)
∑

q=u,d,s,c,b

(q̄LβγμqLα)

Q5 = (s̄LγμbL)
∑

q=u,d,s,c,b

(q̄RγμqR)

Q6 = (s̄LαγμbLβ)
∑

q=u,d,s,c,b

(q̄RβγμqRα)

Electroweak–Penguins (Figure 2.2c):

Q3Q =
3

2
(s̄LγμbL)

∑
q=u,d,s,c,b

eq (q̄RγμqR)

Q4Q =
3

2
(s̄LαγμbLβ)

∑
q=u,d,s,c,b

eq(q̄RβγμqRα)

Q5Q =
3

2
(s̄LγμbL)

∑
q=u,d,s,c,b

eq(q̄LγμqL)

Q6Q =
3

2
(s̄LαγμbLβ)

∑
q=u,d,s,c,b

eq (q̄LβγμqLα)

Magnetic–Penguins (Figure 2.2d):

Q7 =
e

16π2
mbs̄LασμνbRαFμν

Q8 =
g

16π2
mbs̄LασμνT a

αβbRβGa
μν

Q7′ =
e

16π2
mss̄RασμνbLαFμν

Q8′ =
g

16π2
mss̄RασμνT a

αβbLβGa
μν

ΔS = 2 and ΔB = 2 Operators (Figure 2.2e):

Q(ΔS = 2) = (s̄LγμdL)(s̄LγμdL)

Q(ΔB = 2) = (b̄LγμdL)(b̄LγμdL)
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Semi–Leptonic Operators (Figure 2.2f):

Q9 =
e2

16π2
(s̄LγμbL)(l̄γμl)

Q10 =
e2

16π2
(s̄LγμbL)(l̄γμγ5l)

Q9′ =
e2

16π2
(s̄RγμbR)(l̄γμl)

Q10′ =
e2

16π2
(s̄RγμbR)(l̄γμγ5l)

Qνν̄ =
αem

4π
(s̄LγμbL)(ν̄LγμνL)

where the subscripts L and R refer to left- and right-handed components of the fermion
fields. The quark colour indices are represent by α and β and are omitted for colour
singlet currents, Fμν and Ga

μν are the electromagnetic and strong interaction tensors and
eq is the electric charge of the relevant quark.

Not all processes are sensitive to all Wilson coefficients even after they have been
mixed by the renormalisation. The decay b → s γ is only sensitive to the absolute value
of C7, and to a lesser extend to C8. The transition b → s �+�− is sensitive to the values and
signs of C7, C9 and C10. Measurements of these processes will therefore impose limits
on the permitted values of the Wilson coefficients and translate directly into bounds for
extensions to the Standard Model.

2.3 Radiative Decays b → s γ

The radiative decay is a magnetic dipole transition and is therefore mainly mediated by
the operator Q7. The effective Hamiltonian is given by

Heff = −4GF√
2

V ∗
tsVtb

8∑
j=1

Cj(μ)Qj(μ) (2.3)

with the basis for this decay consisting of the first eight operators in the expansion. The in-
clusive decay B → Xs γ is a perfect test-ground for perturbative QCD. Non-perturbative
effects are well under control thanks to the heavy quark expansion and play only a sub-
ordinate role. The dominant short-distance QCD corrections enhance the partonic decay
rate by a factor of more than two. At next-to-leading-log the theoretical Standard Model
branching ratio is predicted to be [9]

B(B → Xs γ )SM = (3.73 ± 0.30) × 10−4
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where the full photon energy spectrum is included. The first exclusive radiative decays
observed were B → K∗γ and B± → K∗±γ by the CLEO collaboration [10]. The
inclusive b → s γ decay rate was later measured by the CLEO collaboration and their
most precise measurement using their complete data set is B(B → Xs γ ) = (3.21 ±
0.43±0.18

0.10) ×10−4 [11]. The ALEPH collaboration measured the branching fraction B →
Xs γ to be B(B → Xs γ ) = (3.11 ± 0.80 ± 0.72) × 10−4 [12]. Including results from
the B-factories and taking into account correlations due to the model dependence a world
average [13] of

B(B → Xs γ )exp. = (3.34 ± 0.38) × 10−4

is obtained, which is in good agreement with the Standard Model prediction.

Recently the Belle collaboration reported the observation of the CKM-suppressed in-
clusive b → d γ decay [14] and a measurement of the CKM matrix element |Vtd/Vts|. The
obtained results are in a good agreement with the predictions from the Standard Model
and a fit to the unitarity triangle. An improved measurement of the decay rate b → d γ
will help to reduce the currently allowed region of the CKM Wolfenstein parameters ρ
and η. It is also important with respect to new physics, because its CKM suppression
(|Vtd/Vts|2) in the standard model might not hold in extended models.

2.4 The Decays b → s �+�−

The decays b → s �+�− receive short-distance contributions from W -box diagrams (Fig-
ure 2.3 (a)) and from electromagnetic and Z0-penguin diagrams (Figure 2.3(b)). Long-
distance contributions arise from the process b → s (cc̄) → s �+�−, with both resonant
(mainly J/ψ and ψ(2S)) and continuum intermediate (cc̄) states (Figure 2.3(c)).

l+

l−

b
W−

νl

W+

u, c, t

s̄

s

s̄

(a)

l+

l−

b

W+

Z, γ

W−s̄

s

u, c, t

s̄

(b)

c

s̄

b

s̄

c̄

s

(c)

Figure 2.3: Main diagrams contributing to the decay B0
s → φ �+�−. The diagrams (a) and

(b) are short distance processes and (c) represents the long distance processes leading to
cc̄ (J/ψ, ψ(2S), . . . , ψ(n)) intermediate states.

The operators contributing to the effective Hamiltonian are the current-current opera-
tors (Q1, Q2), the QCD-penguin operators (Q3, . . . , Q6), the magnetic penguin operators
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(Q7γ, Q8γ) and the semi-leptonic Z0 and γ penguin operators (Q9V , Q10A). The effective
Hamiltonian will then be

Heff = −4GF√
2

V ∗
tsVtb

10∑
j=1

Cj(μ)Qj(μ). (2.4)

The coefficient Cj(μ) are systematically calculable in perturbation theory. Standard
Model values of the Cj at μ = 4.8 GeV calculated in the naive regularisation scheme
at next-to-leading-order (NLO) are given in Table 2.1 [15].

Table 2.1: Standard Model values of the Wilson coefficients at NLO (Ceff
7 ≡ C7−C5/3−

C6).

C1 C2 C3 C4 C5 C6 Ceff
7 C9 C10

−0.248 +1.107 +0.011 −0.026 +0.007 −0.031 −0.313 +4.344 −4.669

Diagrams where the internal virtual quark is a top quark are - due to the large top
quark mass - largely dominant over diagrams with virtual up or charm quarks. Entirely
negligible are diagrams with an internal up quark, due to its small mass and the small
value of the relevant CKM matrix elements (|V ∗

usVub/V
∗
tsVtb| < 0.02). A small correction

is caused by the diagrams with an internal charm quark. Using the unitarity constraint
V ∗

usVub +V ∗
csVcb +V ∗

tsVtb = 0 together with the smallness of V ∗
usVub allows the replacement

V ∗
csVcb = −V ∗

tsVtb.
The long-distance contributions are generated by the current-current operators Q1 and

Q2. In the di-muon invariant mass regions around the J/ψ and ψ(2S) resonances, the
decay is largely dominated by the long-distance contributions, while away from these res-
onances, the short-distance contributions dominate. The branching fraction of the long-
distance decay is about two to three orders of magnitude larger than the short-distance
decay. For the calculation of the non-resonant branching fraction the large distance pro-
cesses have to be excluded because of a failure of quark-hadron duality. For most final
states, the long-distance decay B → Xs J/ψ is well established (with the J/ψ usually
seen via its decay to two muons), and the main interest lies in the observation of the short
distance processes.

The main contribution to the short-distance processes comes from the photonic pen-
guin diagram, the Z0-penguin and box diagrams. As a result the Wilson coefficients C7,
C9 and C10 can be completely determined in b → s �+�− transitions. The measurement
of the branching fraction of the radiative penguin decay b → s γ strongly constraints the
magnitude of the effective Wilson coefficients C7 but not its sign. The latter could, how-
ever, be changed due to non-Standard Model contributions without changing the branch-
ing fraction of b → s γ . The determination of the sign of C7 (as well as the sign of C9
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and C10) in b → s �+�− relies on precise measurements of the distribution of the squared
di-lepton momentum and the forward-backward asymmetry in these decays.

The forward-backward asymmetry for leptons as a function of the squared di-lepton
mass m2

�� = q2 is defined as

AFB(q2) =

∫ 1

0

d2Γ

dxdq2
dx −

∫ 0

−1

d2Γ

dxdq2
dx

dΓ

dq2

, (2.5)

where x ≡ cos θ parameterises the angle between the �+ and the B meson in the di-lepton
centre-of-mass frame.

To measure the Wilson coefficients the di-lepton invariant mass distribution can only
be used in two small regions, at low q2 and at high q2. This is due to the fact that elsewhere
the long distance contributions have a non negligible interference.

2.4.1 Inclusive Decays

Inclusive decays can be calculated perturbatively up to power corrections, using quark-
hadron duality and the optical theorem, and summing over all final states. Schematically,
the decay width is given by∑

Xs

〈B|Q|Xs〉〈Xs|Q†|B〉 =
∑

p

〈B|Q|p〉〈p|Q†|B〉 (2.6)

where Xs is any final state and the sum over p represents the sum over quarks and gluons.
The equality in Eq. 2.6 does not hold on the cc̄ resonances as the quark-hadron duality
fails there. The matrix element is usually written as an expansion in terms of 1/mb. To
first order, the hadronic matrix element 〈XS|Qi|B〉 corresponds to the matrix element of
the free quarks 〈s|Qi|b〉, which can be calculated perturbatively. Corrections due to virtual
and real gluons need to be added. Power corrections (O(1/m2

b)) describe the difference
between initial b-quarks and B mesons. This correction causes an estimated suppression
of the decay rate of the order of 1.5% [16].

The inclusive decay B → Xs �+�− was first measured by the Belle collaboration [17]
and confirmed by the BaBar collaboration [18], using electrons (e) and muons (μ) as lep-
tons in the final states. The measurements agree well with the Standard Model predictions
calculated at NLO including long distance contributions. Table 2.2 gives an overview over
the theoretical predictions and the measurements from the B factories for the branching
fractions with a lower cut of 0.2 GeV/c2 on the di-lepton invariant mass.



20 Chapter 2. Flavour-Changing Neutral Current Decays of B Mesons

Table 2.2: Standard Model branching fraction predictions for the decays B → Xs �+�−

and experimental measurements for m�+�− > 0.2 GeV/c2.

SM prediction B(×10−6) B(×10−6) Belle [19] B(×10−6)BaBar [18]

� = e, μ 4.6 ± 0.8 [20] 4.11 ± 0.83+ 0.85
−0.81 5.6 ± 1.5 ± 0.6 ± 1.1

� = e 6.89 ± 1.01 [21] 4.04 ± 1.30+ 0.87
− 0.83 6.0 ± 1.7 ± 0.7 ± 1.7

� = μ 4.15 ± 0.70 [21] 4.13 ± 1.05+ 0.85
− 0.81 5.0 ± 2.8 ± 0.6 ± 1.0

� = τ 0.26 ± 0.05 [16] - -

2.4.2 Exclusive Decays

Theoretical calculations of the decay rates for exclusive decays require the calculation of
the decay rate into a specific hadronic final state. For semi-leptonic decays , the matrix
elements of the effective Hamiltonian Heff can be factorised into a hadronic and a leptonic
current:

〈h l|Qj|B〉 = 〈h|QH
j |B〉 · 〈l|QL

j |0〉 (2.7)

with Qi = QH
j ·QL

j . The matrix element of the leptonic current can be explicitly calculated
and the hadronic current is expressed in terms of meson form factors. From the theoret-
ical point of view there are large uncertainties arising from decay form factors, making
predictions for the exclusive decay rates difficult. As these form factors describe strong
interaction effects, they have to be calculated using non-perturbative models, Light Cone-
QCD sum rules or vector meson dominance, for each individual configuration of initial
and final state. Different methods have been used to calculate the form factors. Usually
they are calculated in a small region of q2 (momentum transfer to the di-lepton system)
and then extrapolated to the entire region by means of some parametrisation. Theoretical
predictions therefore depend on the model used.

The decays B → K �+�− and B → K∗ �+�−

The decays B → K �+�− and B → K∗ �+�−, induced by b → s �+�− transitions at quark
level, are experimentally easier to measure than the inclusive processes B → Xs �+�−.
The Standard Model predictions for different form factor calculations are shown in Ta-
ble 2.3. The calculations by Ali et al. used the Light Cone-QCD sum rule approach, while
Melikhov et al. used the quark model. As the branching fractions obtained with different
form factor calculations differ, it is difficult to determine fundamental parameters of the
Standard Model, such as CKM elements, from exclusive decays.
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Table 2.3: Branching fractions for B → K(∗) �+�− predicted in the framework of the
Standard Model.

Predicted branching fraction B[×10−6]Mode
Ali et al. [22] Melikhov et al. [23]

B → K �+�− 0.57+0.16
−0.10 0.42 ± 0.09

B → K∗ e+e− 2.3+0.7
−0.4 1.4 ± 0.5

B → K∗ μ+μ− 1.9+0.5
−0.3 1.0 ± 0.4

Experimental results on exclusive decays are also coming from the B-factories. The
Belle collaboration reported in 2002 the first observation of B → K �+�− decays [24] and
in 2003 the first observation of B → K∗ �+�− decays [25]. Shortly after, also the BaBar
collaboration reported on measurements of these exclusive decays [26]. In Table 2.4, the
most recent measurements are summarised.

Table 2.4: Measurements of the branching fractions for B → K(∗) �+�−.

Measured branching fraction B[×10−7]Mode
Belle [27] BaBar [28]

B → K �+�− 5.50+0.75
−0.70 ± 0.27 ± 0.02 3.4 ± 0.7 ± 0.3

B → K∗ �+�− 16.50+2.3
−2.2 ± 0.9 ± 0.04 7.8+1.9

−1.7 ± 1.2

In addition to the measurements of branching fractions, the Belle collaboration re-
ported in [27] the first measurement of the forward–backward asymmetry as a function of
q2 for B → K∗ �+�−. Within their limited statistical precision, the measured asymmetry
is consistent with the Standard Model as well as with both signs of C7. In a more recent
publication [29] they now directly fit the ratio of Wilson coefficients, namely C9/C7 and
C10/C7 and find that the sign of C9 · C10 has to be negative at a 95% CL. The sign of
C7 · C10 could not yet be determined.

The Decay B0
s → φ μ+μ−

The exclusive decay B0
s → φ μ+μ− has not yet been observed. A measurement of this

decay is complementary to measurements of the decays B → K �+�− and B → K∗ �+�−,
which in the Standard Model occur through the same loop processes. Presently, the only
existing experimental bound on this decay is given by CDF from a Run I search [30].
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With an integrated luminosity of 91 pb−1 they set an upper limit at a 95% CL of B(B0
s →

φ μ+μ−) < 6.7 × 10−5.

2.5 The Decays B0
s,d → �+�−

The decays B0
s,d → �+�− are dominated by the Z0-penguin (also called vertical or annihi-

lation penguin) and box diagrams involving top quark exchanges, as shown in Figure 2.4.
With long-distance contributions being negligible in this case, they are, after the b → s νν̄
decay, the theoretically cleanest decays in the field of rare B-decays.

l+

l−

b
W−

νl

W+

u, c, t

d̄, s̄

l+

l−

b

u, c, t

d̄, s̄
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Z

W−
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l−

b

W+

d̄, s̄
ū, c̄, t̄

Z

u, c, t

Figure 2.4: Decay processes contributing to Bs,d → �+�− in the Standard Model.

The effective Hamiltonian for B0
s,d → �+�− decays is given as follows:

Heff = −4GF√
2

V ∗
tbVtq[C10Q10 + CSQS + CP QP ] (2.8)

were q stands either for a s-quark for the B0
s or a d-quark in the case of the B0

d , and the
two operators QS (scalar) and QP (pseudoscalar) are defined as

QS =
e2

16π2
(q̄LαbRα)(�̄�)

QP =
e2

16π2
(q̄LαbRα)(�̄γ5�).

The diagrams in Figure 2.4 contribute only to the Wilson coefficient C10. There is no
contribution from a photonic penguin because of the photon’s pure vector coupling to
leptons. There are also contributions to the Wilson coefficient CS from a Standard Model
Higgs penguin [31] and to the Wilson coefficient CP from the would–be neutral Goldstone
boson penguin [32], but these contributions to the amplitude are suppressed by a factor of
m2

b/M
2
W relative to the dominant contributions and can be ignored. For completeness CS

and CP have been kept because they can be significant in some extensions of the Standard
Model.

The Wilson coefficients are evaluated at a high energy scale ∼ O(MW ) and then prop-
agated to the low scale ∼ O(mB), where the hadronic matrix elements of the operators
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are evaluated. This propagation in general leads to QCD corrections enhanced by large
logarithms of the ratio of the two scales, which must be re-summed. The operator Q10

has zero anomalous dimension because it is a (V −A) quark current, which is conserved
in the limit of vanishing quark masses. Therefore the renormalisation group evolution of
C10 is straightforward. The operators QS and QP have the same form as a quark mass
term and thus have the anomalous dimension of a quark mass. In the Standard Model
and many extensions, CS and CP are proportional to mb. The running of these Wilson
coefficients is therefore properly taken into account by replacing mb(MW ) with mb(mB)
in CS and CP .

Evaluating the hadronic matrix elements, the resulting branching ratio for Bq=s,d is

B(Bq → �+�−) =
G2

F α2m3
Bq

τBqf
2
Bq

64π3
|V ∗

tbVtq|2
√

1 − 4m2
�

m2
Bq

×
[(

1 − 4m2
�

m2
Bq

)∣∣∣∣ mBq

mb + mq

CS

∣∣∣∣
2

+

∣∣∣∣ 2m�

mBq

C10 −
mBq

mb + mq

CP

∣∣∣∣
2
]

, (2.9)

where τBq is the Bq lifetime, fBq is the Bq decay constant, normalised according to fπ =
132 MeV, and the Wilson coefficients CS and CP are retained for completeness.

The Standard Model decay amplitude is given by the Wilson coefficient

C10 = −Y (xt)/ sin2 θW = −4.2. (2.10)

The function Y (xt) represents the dependence on the top mass (xt = m2
t/M

2
W ) and is

given by
Y (xt) = ηγ · Y0(xt) (2.11)

Y0(xt) =
xt

8

[
xt − 4

xt − 1
+

3xt

(xt − 1)2
ln xt

]
(2.12)

where ηY summarises the NLO corrections with ηY = 1.012.
Purely leptonic decays are helicity-suppressed by a factor m2

l , as, by conservation of
angular momentum, the spin-less B0 forces both the lepton and the anti-lepton to be in
the same helicity state.

The Standard Model leptonic branching fractions have been calculated including QCD
corrections in Ref. [33]. The latest Standard Model predictions [34]1 for the various
branching fractions are given in Table 2.5, where the errors are dominated by non-
perturbative uncertainties. For the calculation of the branching fractions of B0

s mesons,
ΔMs = (18.0 ± 0.5)/ps was assumed. The experimental upper limits are given in Ta-
ble 2.6.

1In Ref. [34] only the Standard Model prediction for the decay B0
s → μ+μ− is given. With the given

formulae the other Standard Model predictions have been calculated.
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Table 2.5: Standard Model branching fraction predictions for the decays B0
s,d → �+�−.

B(B0
d → �+�−) B(B0

s → �+�−)

� = e (2.40 ± 0.34) × 10−15 (8.15 ± 1.29) × 10−14

� = μ (1.00 ± 0.14) × 10−10 (3.42 ± 0.54) × 10−9

� = τ (2.90 ± 0.41) × 10−8 (9.86 ± 1.55) × 10−7

Table 2.6: Experimental upper limits for the decays B0
s,d → �+�− at a 90% CL.

B(B0
d → �+�−) B(B0

s → �+�−)

� = e < 6.1 × 10−8 [35] < 5.4 × 10−5 [36]
� = μ < 3.2 × 10−8 [37] < 1.2 × 10−7 [37]
� = τ < 3.1 × 10−3 [38] < 5.0 × 10−2 [39]

Since the ratio of the decay constants fB0
d

and fB0
s

can be calculated reliably by non-
perturbative methods or measured in leptonic decays, the ratio

B(B0
s → μ+μ−)

B(B0
d → μ+μ−)

=
τ(B0

s )mB0
s
f 2

B0
s
|Vts|2

τ(B0
d)mB0

d
f 2

B0
d
|Vtd|2 (2.13)

will provide a useful measurement of |Vts|2/|Vtd|2 with a smaller theoretical uncertainty
than the individual branching ratio measurements. As this ratio is larger than one, it can
be seen that the branching fraction for B0

d-decays is expected to be smaller (by about one
order of magnitude) than for B0

s -decays.

The limits on the branching ratios B0
s → μ+μ− and B0

d → μ+μ− can be compared to
the values expected in the Standard Model. Currently the 90% CL limit on B0

s → μ+μ−

is approximately a factor of 35 larger than the Standard Model branching ratio, while the
limit on B0

d → μ+μ− is approximately 320 times larger. This makes it rather clear why a
search for the decay B0

s → μ+μ− is the preferred choice.

2.5.1 Beyond the Standard Model

The decay amplitude of B0
s,d → μ+μ− can be significantly enhanced in some extensions

of the Standard Model. The effects of additional non-Standard Model diagrams would
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modify the magnitude and sign of the Wilson coefficients and could even introduce new
operators in more exotic models.
Models with more than one Higgs doublet (HDM)

In general models with more than one Higgs doublet, flavour-changing neutral cur-
rents can occur at tree-level leading to a severe enhancements of K − K and B − B
mixing not seen in experimental data [4]. These enhancements are suppressed “naturally”
if all the down-type quarks acquire their masses through their coupling to the same Higgs
boson doublet, Hd, and all the up-type quarks through their coupling to a second Higgs
boson doublet, Hu. Under the requirement of this “natural flavour conservation”, differ-
ent configurations are possible for the coupling of the two Higgs doublets Hu and Hd of a
2 Higgs doublet model (2HDM) to quarks. In the type-I 2HDM all quarks couple only to
one Higgs doublet and not to the other. In the type-II 2HDM the down-type right-handed
quark singlets couple to Hd while the up-type right-handed quark singlets couple to Hu.
The most general 2HDM without natural flavour conservation, in which the right handed
fermion singlets with different values of hypercharge couple to Higgs doublets, is called
the type-III 2HDM.

The Minimal Supersymmetric Standard Model (MSSM) is a supersymmetric exten-
sion of the Standard Model with a minimal number of new particles. For each particle,
there is a superpartner with the same internal quantum numbers, but with a spin that dif-
fers by half a unit. The Higgs sector contains two doublets, corresponding to five physical
particles: one CP -odd neutral Higgs boson, A, two neutral CP -even bosons, h0 and H0,
and the charged H±. At tree level, the Higgs masses can be described by two parameters,
namely tan β, the ratio of the two neutral Higgs field vacuum expectation values, and mA.
The low energy effective theory of the MSSM is a type-III 2HDM.

In this model the Wilson coefficients CS and CP in Eq. 2.9, neglected in the Stan-
dard Model, have to be taken into account due to Higgs penguin diagrams. The scalar
and pseudoscalar Wilson coefficients CS,P grow like tan3 β, and therefore are roughly
(m2

b/M
2
W ) tan3 β times bigger than C10 and dominate for large values of tan β. Other

electroweak SUSY box and Z-penguin contributions grow with at most the second power
of tan β and thus are subdominant in this region. This gives

B(B0
s → μ+μ−) ∝ (tan β)6, (2.14)

leading to an enhancement of up to three orders of magnitude [40, 41] compared to the
Standard Model, even if the MSSM with minimal flavour violation (MFV) is considered
in which the CKM matrix is the only source of flavour violation. An observation of
B0

s → μ+μ− would then yield an upper bound on the heaviest mass in the MSSM Higgs
sector [42] if MFV applies.

In type-II 2HDM, charged Higgs bosons can be exchanged in addition to W bosons
in the loop diagrams. In the limit of large tan β the 2HDM contributions for the decay
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B0
s,d → μ+μ− are significant. The Wilson coefficients CS and CP receive contributions

from the box and penguin diagrams involving W and H+ bosons. There are also contri-
butions due to fermion self-energy diagrams with a neutral Higgs boson exchange. In this
model there are no new contributions to C10, which therefore retains its Standard Model
value. The obtained Wilson coefficients in the type-II 2HDM are

CS = CP =
ml

2M2
W

tan2 β
log r

r − 1

with r = xH+/xt = M2
H+/m2

t . The dependence on the masses of the neutral Higgs
bosons from penguin and self-energy diagrams drop out without invoking any relations
between the mixing angle and the Higgs masses. The branching fraction depends only
on two 2HDM parameters, the charged Higgs mass MH+ and tan β, with the branching
fraction growing like tan4 β [43]. The predicted value for B(B0

s → μ+μ−) as a function
of the charged Higgs mass MH+ and for various values of tan β is shown in Figure 2.5.
For large tan β and light MH+ , the 2HDM contribution dominates, enhancing the branch-
ing fraction significantly. As the 2HDM contribution becomes smaller due to decreasing
tan β or increasing MH+ the branching fraction drops, eventually falling below the Stan-
dard Model prediction due to destructive interference.

B0
s → μ+μ− and dark matter

The general superpotential of the MSSM contains terms that violate baryon and lepton
numbers. In order to cure this, a new symmetry, called R-parity, is introduced. It is a
multiplicative quantum number which is positive for all particles of the Standard Model
and negative for their superpartners. The R-parity quantum number is given by

R = (−1)3(B−L)+2S (2.15)

for a particle with spin S and baryon- and lepton numbers B and L. This symmetry has
a great influence on the phenomenology of the MSSM, since it requires that supersym-
metric particles are always produced in pairs. The conservation of R-parity means that
the Lightest Supersymmetric Particle (LSP) is stable. In supergravity models this is the
neutralino. This particle could turn out to be a good candidate for cold dark matter (DM).
Recent data from the WMAP satellite indicate a dark matter density in the universe of
ΩDMh2 � (0.095 − 0.13) at a ±2σ level [46] which could be dominated by the relic
density of neutralinos within SUSY models.

There has been experimental progress in the direct detection of neutralino dark matter
through (in)elastic scattering on various nuclei. Such experiments can be sensitive to a
neutralino with mass O(100 GeV/c2), which is in the mass region predicted by various
supergravity scenarios. A particularly interesting region of the neutralino nucleon cross
section σχ̃p in which one experiment (DAMA) has claimed a dark matter signal [47] has
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Figure 2.5: The branching fraction B(B0
s → μ+μ−) in the 2HDM as a function of the

charged Higgs mass MH+ and various values of tan β [43]. For comparison the Standard
Model prediction and the current experimental bounds [37, 44, 45] are shown where the
result from DØ represents the limit obtained in the analysis presented in this thesis. The
vertical line is the lower bound on MH+ in the type-II 2HDM from b → s γ decays.

been recently excluded by the CDMS cryogenic dark matter search experiment [48] in the
range of

σχ̃p = (10−6 − 10−5) pb. (2.16)

For a given value of tan β there is a strong correlation between the dark matter scatter-
ing cross section of the neutralino σχ̃p and B(B0

s → μ+μ−) [49]. In the large tan β limit,
the heavy neutral Higgs H0 exchange contribution to the dark matter scattering becomes
important because of its enhanced coupling to down type quarks. This is relevant for
the heavy Higgs interaction with the strange quark content inside nucleons, and the dark
matter scattering cross section becomes enhanced. Therefore, the dark matter scattering
amplitude increases linearly as tan β increases, and decreases as mA increases. On the
left side in Figure 2.6, the correlation between σχ̃p and B(B0

s → μ+μ−) within mSUGRA
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D0 and CDF combined at a 95% CL

CDMS
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Figure 2.6: σχ̃p vs. B(B0
s → μ+μ−) within mSUGRA with universal Higgs mass parame-

ters (left side) and non-universal Higgs mass parameters (centre and right side) for various
values of tan β [49]. The black dots are for Ωχh2 ≥ 0.13 (greater than 2σ of the preferred
density of WMAP data), red dots for 0.095 ≤ Ωχh2 ≤ 0.13 (within 2σ of WMAP data)
and green dots for Ωχh2 ≤ 0.095 (less than 2σ of WMAP data). Also indicated are the
current experimental bounds from the analysis presented in this thesis [44] as well as the
combined limit with CDF [37] as vertical lines. The experimental bound on σχ̃p from
CDMS[48] is also shown in the centre and right plot.

is shown for various values of the universal Higgs mass and for tan β = 10, 35 and 55,
respectively. For large tan β, there is a strong correlation between the two observables.
Giving up the restriction on the universal mass parameter for the Higgs doublet one can
assume the universal soft masses as

m2
Hu

= m2
0 (1 + δHu), m2

Hd
= m2

0 (1 + δHd
), (2.17)

whereas other scalar masses are still universal. The correlation between σχ̃p vs. B(B0
s →

μ+μ−) for two parameter sets of δHu and δHd
is shown in the centre and on the right side

of Fig. 2.6. The current experimental limit on B(B0
s → μ+μ−) already puts a strong

constraint on σχ̃p in the large tan β region, even stronger than the CDMS limit. Thus,
the decay B0

s → μ+μ− could give information not only on SUSY breaking mediation
mechanisms but also places a severe limit on the neutralino dark matter scattering cross
section within a large class of supergravity models in the large tan β region.
mSUGRA

Even if R-parity conservation is imposed on the MSSM there is still a large num-
ber of parameters. The construction of a model with only a few parameters is therefore
desirable. An elegant solution to this problem is the minimal supergravity (mSUGRA)
scenario. In mSUGRA, local supersymmetry (supergravity) is spontaneously broken in
the hidden sector, where the minimum of the scalar potential violates supersymmetry. The
superpartner of the graviton acquires a mass from the so called super Higgs effect. This
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is a phenomenon similar to the Higgs mechanism through which the W boson gains mass
by absorbing the charged component of a Higgs doublet in the Glashow-Salam-Weinberg
model. Supersymmetry breaking is mediated to the observable sector via gravity interac-
tions. In this model all supersymmetric parameters relate to just five real quantities: the
universal scalar and gaugino masses M0 and M1/2, the trilinear term A0, tan β and the
sign of μ, where μ is the Higgsino mass parameter. The first three quantities are defined
at the grand unification scale, the others at the electroweak scale.

An enhancement of B(B0
s → μ+μ−) is correlated [40, 50] with a sizeable positive

shift in (g−2)μ, the anomalous magnetic momentum of the muon. Recently, an excess of
the muon anomalous magnetic moment aμ = (g − 2)μ/2 has been reported [51]. Taking
into account e+e− collision data in order to calculate the π+π− spectral functions for the
hadronic vacuum polarisation for the magnetic moment of the muon, the measurement
corresponds to a 2.6σ deviation [52] from the Standard Model predicted value. In the
mSUGRA interpretation this anomaly implies μ > 0. For not too large values of M0,
M1/2

<∼500 GeV/c2 and A0 � 0 GeV/c2 the branching fraction for B0
s → μ+μ− can be

approximated by

B(B0
s → μ+μ−) ≈ 10−6 · tan6 β

M2
1/2 GeV4

(M2
1/2 + M2

0 )3
(2.18)

outside the vicinity of M1/2 = 0.4M0. An estimation of the supersymmetric contributions
yields

(δaμ)SUSY ∝ tan β
f(M0)

M1/2

(2.19)

with δaμ = aexp
μ − aSM

μ . This shows that both B(B0
s → μ+μ−) and (δaμ)SUSY grow with

tan β and decrease with increasing M1/2. If the SUSY explanation for δaμ �= 0 holds and
is due to a large value of tan β, one would expect B(B0

s → μ+μ−) to be enhanced by
more than one order of magnitude. For a small value of M1/2 and a moderate value of
tan β, however, the enhancement is expected to be smaller.

Grand Unified Theories

The minimal SO10 supersymmetric model [MSO10SM] based on the SO(10) Lie
group [53, 54, 55] is one candidate for a grand unified theory (GUT). In this model,
quarks and leptons, and their supersymmetric partners, of one family reside in the 16
dimensional representation, while the two Higgs doublets of the MSSM reside in one 10
dimensional representation. It is assumed that the couplings obey a hierarchical mass
matrix for the first two generations and their mixing with the third generation, due to
effective higher dimensional operators. Soft SUSY breaking parameters are a universal
gaugino mass M1/2, a universal squark and slepton mass2 m16, a universal scalar Higgs

2SO10 does not require all sfermions to have the same mass.



30 Chapter 2. Flavour-Changing Neutral Current Decays of B Mesons

mass m10, and a universal parameter A0. In addition there is the supersymmetric (soft
SUSY breaking) Higgs mass parameter μ (Bμ), that is interchangeable with tan β. All
these parameters are independent. To fit the low energy electroweak data, including the
third generation fermion masses, it has been shown that A0, m10, m16 must satisfy the
constraints [53, 54]

A0 ≈ −2 m16; m10 ≈
√

2 m16 (2.20)
m16 > 1.2 TeV/c2; μ, M1/2 � m16 (2.21)

with
tan β ≈ 50. (2.22)

In this model, the cosmological dark matter density Ωχh2 and B(B0
s → μ+μ−) both

depend on mA and tan β. In Figure 2.7 contours of constant χ2 for m16 = 3 TeV/c2 and

Figure 2.7: Contours of constant χ2 for m16 = 3 TeV/c2 and mA = 500 GeV/c2 (left side)
and 700 GeV/c2 (right side), indicating the allowed region for B0

s → μ+μ− [55].

mA = 500 GeV/c2 (left plot) and mA = 700 GeV/c2 (right plot) are shown. The red (light
shaded) regions are excluded by mχ+ < 104 GeV/c2 (below and to the left of the solid
black curve), mh < 111 GeV/c2 (on the right) and by Ωχh2 > 0.129. To the right of the
thick broken black line one has mh < 114.4 GeV/c2 which is the CERN e+e− Collider
(LEP) exclusion limit on the Higgs mass. The green (darkest shaded) band corresponds
to the preferred 2σ range 0.094 < Ωχh2 < 0.129, while the white regions below it
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correspond to Ωχh2 < 0.094. The region excluded by the DØ experimental bound on
B(B0

s → μ+μ−) < 5.0× 10−7 at 95% CL is marked in dark blue (dark shaded), while the
region affected by the new preliminary CDF bound B(B0

s → μ+μ−) < 2.0×10−7 at 95%
is marked in light blue (light shaded). Contours of constant B(B0

s → μ+μ−) are given
by the blue dashed lines. The branching ratio B(B0

s → μ+μ−) depends on the value of
the CP -odd Higgs mass mA, as m−4

A . For mA = 500 GeV/c2 and for acceptable values of
Ωχh2 (Figure 2.7 (left)) the branching ratio B(B0

s → μ+μ−) is below the published DØ
bound, but is almost excluded by the preliminary CDF bound. Increasing the CP -odd
Higgs mass to mA = 1.25 TeV/c2 shifts the allowable B0

s → μ+μ− decay rate down to
B(B0

s → μ+μ−) > 10−8. Hence, acceptable regions of parameter space in the minimal
SO(10) model lead to predictions of observable rates for B0

s → μ+μ− at the Tevatron.
Other models

In R-parity violating supersymmetry, lepton and baryon number violation can occur.
Therefore also lepton violating terms have to be considered when calculating the decay
B0

s → μ+μ−. Unlike in R-parity conserving models, the SUSY contribution can now
enter at tree level, and can become considerable [56].

The idea of extra dimensional (ED) models is that extra compactified space-like di-
mensions at a scale larger than the Planck scale of ∼10−33 cm [57] exist. This idea led
to exciting perspectives for particle phenomenology, cosmology and string theory. In ED
models, Standard Model particles are allowed to travel in all available extra dimensions.
Such a higher-dimensional theory can be described as an effective theory in four dimen-
sions which contains an infinite tower of Kaluza-Klein modes of the higher dimensional
field. The decay B0

q → �+�− will proceed via the same box and penguin diagrams as
in the Standard Model. However, each boson line will now involve several Kaluza-Klein
modes. An enhancement of the branching ratio depends on the compactification scale and
the number of extra dimensions [58].

In technicolour models, there is no fundamental Higgs scalar particle. Instead, addi-
tional scalar particles (techni-particles) are introduced to connect the technicolour conden-
sate to the ordinary fermions. The branching fraction for B0

s → μ+μ− can be enhanced
in this models up to a factor of five over the Standard Model prediction [59].
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Experimental Environment

The Tevatron accelerator at the Fermi National Accelerator Laboratory (FERMILAB) in
Batavia, Illinois, USA, is a proton-antiproton (pp) collider. During the first data-taking
period from 1992 to 1996 (Run I), the Tevatron experiments CDF and DØ each collected
about 125 pb−1 of pp collision data at a center-of-mass energy of 1.8 TeV, leading to
the discovery of the top quark and the measurement of its mass, a precision measure-
ment of the mass of the W boson, detailed analyses of gauge boson couplings, studies
of jet production and vastly improved limits on new phenomena, such as leptoquarks and
supersymmetric particles, among many other accomplishments.

After a break of about five years, during which the accelerator and the experiments
have undergone significant upgrades, the second phase of data taking, called Run II,
started in 2001. The Tevatron is expected to deliver between 4 fb−1 and 9 fb−1 by the
year 2009.

3.1 Tevatron

Today, the Tevatron accelerator, operated at a center-of-mass energy of 1.96 TeV, is the
most energetic particle collider in the world and will remain so until the Large Hadron
Collider (LHC) at CERN will be turned on.

The main ring has a circumference of about 6 km. The accelerated protons collide
with antiprotons moving in the opposite direction in the synchrotron ring. The collisions
take place in two interaction regions which are surrounded by the two detectors CDF and
DØ.

32
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3.1.1 The Tevatron Accelerator Complex

Generally, collision experiments involve in three different steps: the initial production and
injection of the particles, a chain of successive acceleration and finally the collision itself.
The Tevatron ring is only the last part of a cascade of pre-accelerators at FERMILAB as
schematically illustrated in Figure 3.1.
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Figure 3.1: The accelerator facilities at FERMILAB with the two multi purpose detectors
CDF and DØ.

The protons used in the collisions are extracted from negatively charged hydrogen
ions. The ions are accelerated to 750 keV by a Cockroft-Walton accelerator and injected
into a 165 m long linear accelerator which boosts their energy to 400 MeV. The ions are
then stripped off their electrons as they pass through a sheet of graphite and are injected
into the Booster, a synchrotron which brings their energy to 8 GeV.

Protons from the Booster are sent to the Main Injector, where they are further accel-
erated to 150 GeV. Antiprotons used in the collisions are collected from the interaction
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products of a fraction of the 120 GeV proton beam incident on a Nickel-Copper target.
The collision energy is chosen such that the energy spectrum of the emerging antiprotons
(p̄) has its maximum at about 8 GeV. On average, around 50 000 protons are necessary to
produce one antiproton in the required energy range. The Tevatron complex is designed
in a way that new antiprotons can be produced in parallel to collisions taking place in
the main Tevatron ring. The produced antiprotons are cooled and debunched in the De-
buncher and Accumulator, and once the number of antiprotons is sufficiently large they
are passed to the Main Injector where they are accelerated to 150 GeV for transfer to the
Tevatron. Once the protons and antiprotons are injected into the Tevatron, they are accel-
erated to their final energy of 980 GeV before colliding at the centre of the CDF and DØ
detector.

Protons and antiprotons are stored in bunches, with 36 bunches separated by 396 nsec.
The 36 bunches in the proton and anti-proton beam are organised into three super-
bunches, with a 2 μs gap between each super-bunch.

Figure 3.2 shows the integrated luminosity per week and the total integrated luminos-
ity accumulated in Run II from May 2001 until August 2005. The initial luminosity for
each fill is shown in Figure 3.3.

Figure 3.2: The integrated luminosity per week and total integrated luminosity for Run II
from May 2001 until August 2005 in pb−1.
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Figure 3.3: The initial luminosity for each fill for the Tevatron Run II from May 2001
until August 2005.

3.2 The DØ Detector

The DØ detector was built in the late 1980’s and early 1990’s [60], operated from 1992 to
1996 in Run I of the Tevatron, and was then upgraded to handle the increased luminosities
in Run II of the Tevatron [61, 62]. It is a large multi-purpose detector and has been
built to measure precisely muons, electrons, jets and missing transverse energy. To serve
this purpose, the DØ detector consists of three major subsystems. At the core of the
detector, a magnetised tracking system records precisely the angles of charged particles
and measures their transverse momenta. A hermetic, finely grained Uranium and Liquid
Argon calorimeter measures the energies of electromagnetic and hadronic showers, and
a muon spectrometer detects and measures the momenta of escaping muons. Figure 3.4
shows a schematic overview of the detector.

3.2.1 Coordinate System

The Cartesian coordinate frame of DØ is defined with its origin at the nominal pp inter-
action point and the z-coordinate pointing along the proton beam-line (the protons circle
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Figure 3.4: Cross-sectional view of the DØ Run II detector.

clockwise in the Tevatron). The x-coordinate is pointing towards the centre of the Teva-
tron ring and the y-coordinate is pointing upwards. Polar coordinates (r,φ) are defined
by:

r =
√

x2 + y2

(3.1)
φ = arctan

y

x

A convenient parameter to express the polar angle θ at hadron colliders is the pseudo-
rapidity η, defined as

η = − ln tan
θ

2
, (3.2)

as the multiplicity of high energy particles in QCD production is roughly constant in η.
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3.2.2 Luminosity System

The primary purpose of the Luminosity Monitor (LM) [63] is to make an accurate deter-
mination of the Tevatron collider luminosity at the DØ interaction region [64].

The LM detector consists of two arrays of twenty-four plastic scintillation counters
with photomultiplier readout. A schematic drawing of an array is shown in Figure 3.5.
The arrays are located in front of the end calorimeters at z = ±140 cm, and occupy the

calorimeter
Forward

North South

-140 cm 140 cm

η = 4.4

LM

proton direction

beam pipe

silicon tracker

η = 2.7

Figure 3.5: Luminosity Monitor layout. The r − φ view is shown on the left, the r − z
view of the two arrays is shown on the right.

region between the beam pipe and the Forward Preshower Detector (see Sect. 3.2.4). The
counters are 15 cm long and cover the η range 2.7 < |ηdet| < 4.4.

The luminosity measurement is accomplished by detecting inelastic pp collisions in
the dedicated LM detector. The luminosity L is calculated as

L =
N

εAσinel

(3.3)

The known inelastic cross section σinel has to be corrected for the efficiency ε and the
acceptance A of the LM detector for inelastic pp collisions.

Multiple pp collisions can occur in a single beam crossing. The number of interac-
tions per bunch crossing is given by Poisson statistics. For the instantaneous luminosities
at which the data for this analysis were recorded, an average1 of 0.5 inelastic pp collisions
are expected per event in addition to the hard-scatter interaction. Collision products arrive
at each set of scintillators roughly in coincidence, while products from beam halo interac-
tions pass through the detectors at distinctly separated times. Time-of-flight information
from the two luminosity arrays and the z vertex distribution (see Figure 3.6) is utilised to
separate these processes. The number of events N is corrected for these two effects.

1The average refers to the mean of a Poisson distribution.
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Figure 3.6: The sketch on the left shows the differentiation between inelastic collisions
and beam halo. Expected z vertex distribution for inelastic collisions, centred at z = 0 cm,
p halo centred at z = −140 cm and p̄ halo centred at z = 140 cm (right).

3.2.3 Central Tracking System

The central tracking system is surrounded by a solenoid magnet which provides a nearly
uniform (magnetic) field of B = 2 T parallel to the beam axis. Charged particles produced
in the collision are bent around the field lines. The radius r of the curvature allows for a
measurement of the transverse momentum through:

pT [GeV] = 0.3 · r[m] · B[T] . (3.4)

Closest to the beam pipe itself is the Silicon Microstrip Tracker (SMT), which allows
for the precision measurements that are crucial for an accurate measurement of impact
parameters and the identification of secondary vertices. Surrounding the SMT is the Cen-
tral Fibre Tracker (CFT), consisting of 16 layers of scintillating fibre. The CFT extends
to a radius of 50 cm, giving a lever arm long enough to provide sufficient transverse
momentum resolution. The DØ central tracking system is illustrated in Figure 3.7.

Silicon Microstrip Tracker

Charged particles passing through the 300 μm thick wafers of n-type silicon which consti-
tute the SMT [65] produce pairs of electrons and holes. The ionised charge is collected by
strips of p+-type or n+-type silicon strips with a pitch between ∼ 50 μm and ∼ 150 μm.

The length of the interaction region (σ ≈ 25 cm) determines the length of the device
in z. With a long interaction region, it is difficult to deploy detectors such that the tracks
are generally perpendicular to detector surfaces for all η. This led to a design using barrel
modules interspersed with disks in the centre and assemblies of disks in the forward and
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Figure 3.7: Cross-sectional view of the DØ tracking and preshower system.

backward regions. The barrel detectors measure primarily the r - φ coordinate and the
disk detectors measure r - z as well as r - φ. Thus vertices for high η particles are
reconstructed in three dimensions by the disks, and vertices of particles at small values of
η are measured in the barrel.

An isometric view of the SMT is shown in Figure 3.8. The detector has six barrels
in the central region. Each of these consists of four silicon readout layers, each layer
having two staggered and overlapping sub-layers, see Figure 3.9. The outer barrels have
single-sided and double-sided 2◦ stereo ladders. The four inner barrels have double-sided
90◦ stereo and double-sided 2◦ stereo ladders. Each barrel is capped at high |z| with a
so called “F-disk”. In the far forward and backward regions, a unit consisting of three
F-disks and two large-diameter “H-disks” provides tracking at |ηdet| < 3.0. The F-disks
are made of twelve wedges of double sided stereo detectors. The H-disks are made of
24 pairs of single-sided detectors glued back to back. Table 3.1 [66] summarises relevant
SMT design parameters.
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Figure 3.8: Isometric view of the DØ silicon vertex detector.

Barrels F-Disks H-Disks
#Channels 387 072 258 048 147 456
Sensors s/d sided double sided single sided
Stereo 0◦, 2◦, 90◦ ±15◦ ±7.5◦

#Modules 432 144 96 pairs
Si area 1.3 m2 0.4 m2 1.3 m2

Inner radius 2.7 cm 2.6 cm 9.5 cm
Outer radius 9.4 cm 10.5 cm 26 cm
Maximal |z| 38.4 cm 54.8 cm 120 cm

Table 3.1: Specifications of the silicon vertex detector, where “s,d” means single, double
sided.

Central Fibre Tracker

The Central Fibre Tracker [61, 62] consists of 835 μm diameter scintillating fibres
mounted on eight concentric support cylinders and occupies the radial space from 20
to 52 cm from the centre of the beam pipe. The two innermost cylinders are 1.66 m long,
the outer six cylinders are 2.52 m long. Each cylinder supports one double layer of fibres
oriented along the beam direction and a second double layer at a stereo angle of alternat-
ing +3◦ and −3◦. The two layers of fibres are offset by half a fibre width to ensure full
acceptance coverage. The small fibre diameter gives the CFT a cluster resolution of about
100 μm per double layer.

Light production in the fibres is a multi-step process. When a charged particle tra-
verses one of the fibres, the scintillator emits light at λ = 340 nm through a rapid flu-
orescence decay. A wave-shifting dye efficiently absorbs the light well at λ = 340 nm
and emits at λ = 530 nm. The light is then transmitted by total internal reflexion to the
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Figure 3.9: Cross section of the silicon vertex detector barrel structure.

end of the scintillating fibre, where it is transfered through an optical connection to clear
fibre waveguides of identical diameter, which are 7.8 to 11.9 m long. The light is only
observed from one end of each scintillating fibre. The opposite end of the scintillating
fibres is sputtered with an aluminium coating that provides a reflectivity of 85 to 90 %.
The clear fibre waveguides carry the scintillation light to visible light photon counters
(VLPCs) which convert it into an electronic pulse.

The visible light photon counters are situated in a liquid Helium cryostat and operate at
a temperature of 9 K. They detect photons with a quantum efficiency of 85 % and provide
about 30 k- 60 k electrons per photon. A minimum ionising particle creates an average of
eight photo-electrons per layer, depending on the angle between the scintillating fibre and
the particle trajectory.

Solenoid Magnet

The superconducting solenoid magnet [67] is designed to optimise the tranverse momen-
tum resolution, ΔpT /pT , and track recognition. It is 2.73 m in length and 1.42 m in
diameter, corresponding to maximum of 0.9 radiation lengths, X0, and provides a 2 T
magnetic field with a field homogeneity of 0.5 %. It operates at 10 K, the current is
4820 A and the stored energy is 5.6 MJ.
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3.2.4 Calorimeter System

The task of the calorimeter system is to measure the energy of particles by inducing them
to produce electromagnetic and hadronic showers. Passive layers of dense material in
which the shower begins are followed by active layers, where the surviving fraction of the
shower energy is sampled through ionisation.

Preshower Detectors

The preshower detectors (see Figure 3.7) are designed to improve electron identification
and the energy resolution, which is degraded compared to Run I by the presence of the
solenoid. They function as calorimeters as well as tracking detectors, enhancing the spa-
tial matching between tracks and calorimeter showers [68].

Central Preshower detector
The Central Preshower detector (CPS) consists of three concentric cylindrical layers
of triangular scintillator strips (axial and stereo ±23◦). It is located in the 5 cm gap
between the solenoid and the central calorimeter, and covers the of region |ηdet| <
1.3. Installed between the solenoid and the CPS is a Pb radiator approximately
one radiation length thick which serves to discriminate photons and electrons from
pions by converting them into showers.

Forward Preshower detector
The Forward Preshower detectors (FPS) are each mounted on the spherical heads of
the end calorimeter cryostats (see Sect. 3.2.4). They occupy the region between the
luminosity counters (see Sect. 3.2.2) at the inner edge and the intercryostat detectors
(see Sect. 3.2.4) at the outer edge, and cover the region of 1.5 < |ηdet| < 2.5. Each
detector is made from two double layers of scintillator strips (stereo ±22.5◦), sep-
arated by a 2 X0-thick lead-stainless-steel absorber. All charged particles passing
through the detector register a three-dimensional hit in the first, so-called MIP layer.
Photons do not generally interact in the MIP layer. Electrons and photons shower
in the absorber, leading to a cluster of energy in the second, so-called shower layer.
These signatures can be used to distinguish muons, electrons and photons.

Scintillating light produced from the passage of charged particles is collected by
wavelength-shifting fibres and transmitted through clear fibres to photon counters in the
same way as explained for the central fiber detector in Section 3.2.3.

The preshower detectors are discussed in more detail in [69] and [70].
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Liquid Argon Calorimeter

The Liquid Argon calorimeter [61, 62, 71] is designed to provide precise energy measure-
ments, to assist in the identification of electrons, photons, taus and jets and to establish the
transverse energy balance in an event. The device is also sensitive to minimum ionising
particles and therefore can serve to identify muons. The calorimeter itself is unchanged
from Run I and is shown in Figure 3.10. However, there is significantly more material
in front of the calorimeter (2-4 X0, depending on η) and faster readout electronics were
build to cope with the reduced bunch crossing time from Run I to Run II.

1m
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Figure 3.10: Isometric view of the central and two end calorimeters.

As shown in Figure 3.11, the Liquid Argon calorimeter is subdivided into the central
calorimeter (CC) covering roughly |ηdet| < 1 and two end calorimeters (EC) extending the
coverage to |ηdet| ≈ 4. Each calorimeter contains an electromagnetic section closest to the
interaction region followed by fine grained and coarse grained hadronic sections whose
module size increases with the distance from the interaction region. The active medium
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Figure 3.11: Schematic view of a quarter of the DØ calorimeter showing the transverse
and longitudinal segmentation pattern. The shading pattern indicates cells for signal read-
out. The rays indicate the pseudo-rapidity intervals seen from the centre of the detector.

for all calorimeters is liquid Argon, and each of the three calorimeters is located within
a cryostat that maintains the temperature at approximately 80 K. In order to achieve the
same energy response for electromagnetic and hadronic particles, e/h ≈ 1 (compensating
calorimeter), different absorber plates are used at different locations. The e/π ratio was
measured for charged pions in test beam data of Run I and the calorimeter was found
to be nearly compensating, with 1 < e/π < 1.05 for energies above 30 GeV [72]. The
electromagnetic sections (EM) use thin (3 or 4 mm) plates made from nearly pure depleted
Uranium. The fine hadronic sections are made from 6 mm thick Uranium-Niobium alloy.
The coarse hadronic modules contain 46.5 mm thick plates of either Copper (in the CC)
or stainless steel (in the EC).

The elements are combined in a basic unit, a calorimeter cell, depicted in Figure 3.12,
which contains the absorber plates, the active medium and a Copper readout pad, lami-
nated to G10 and covered in resistive epoxy, for collecting the charge generated by ioni-
sation. An electric field is established by grounding the absorber plates and holding the
resistive surface of the pad at typically 1.6 kV. The electron drift time across the 2.3 mm
gap is approximately 450 ns. Several such pads are connected together in depth to form a
readout cell (see Figure 3.11).
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Figure 3.12: Schematic view of a calorimeter cell.

Inter-Cryostat Detectors

Since the calorimeter system is contained in three separate cryostats, it provides an in-
complete coverage in the pseudorapidity region 0.8 < |ηdet| < 1.4, as can be seen in
Figure 3.11. Additional sampling layers are added in the form of scintillating counters
between the CC and EC cryostats (called Inter-Cryostat Detector or ICD [61, 62, 71]).
The segmentation of Δη×Δφ = 0.1×0.1 matches exactly the Liquid Argon calorimeter
geometry. In addition, separate single-cell structures, called massless gaps [61, 62, 71]
are installed, both in the central calorimeter and in the end cap calorimeters.

3.2.5 Muon System

The outermost part of the DØ detector is the muon system (Figures 3.13 and 3.14). The
detection of muons relies on their penetration power through material. Several meters of
high-density material absorb almost all electrons and hadrons. Any charged particle that
penetrates this material is defined to be a muon. The DØ muon detection system serves
to identify and trigger on these muons and measure their momenta and charge.

The muon spectrometer consists of three subsystem: Proportional Drift Tubes (PDTs),
Mini Drift Tubes (MDTs) and scintillation counters. The PDTs cover the region of
|ηdet| < 1.0 and the planes of MDTs extend the muon detection to |ηdet| = 2.0. The
scintillation counters are used for triggering and for the rejection of cosmic and beam
related muons. Toroidal magnets and a special shielding complete the muon system.
Each sub-system has three layers, called A, B, and C. The A layer is located between the
calorimeter and the iron of the toroid magnet, the B and C layers are located outside of
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Figure 3.13: A cut-away view of the muon system.

the iron. In the region directly below the calorimeter, only partial coverage by muon de-
tectors is possible since the support structure for the DØ detector and readout electronics
is located in this region.

The thickness of the detector is in the range of 5-9 interaction lengths in the calorime-
ter, and in the range of 7-9 interaction lengths in the iron. This results in a most probable
value for the energy loss of a muon of 1.6 GeVin the calorimeter, and about 1.7 GeV in
the iron. The momentum measurement is corrected for this energy loss.

In the following, the subsystems of the muon spectrometer are discussed.

Toroid Magnet

The 1973 ton toroid magnet [67], located between layers A and B, allows a measurement
of the muon momentum. The central toroid is centred at a distance of 317.5 cm from the
Tevatron beam line. In order to permit access to the inner portions of the DØ detector, it
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Figure 3.14: Side view of the DØ muon system with Proportional Drift Tubes (PDTs),
Mini Drift Tubes (MDTs), scintillator counters, toroid magnet and shielding.

is split into three parts. A bottom section gives support for the calorimeter and tracking
detectors. The central toroid is completed by two movable c-shaped shells. The two
forward toroid magnets are located at 447 ≤ |z| ≤ 600 cm. The coils carry currents of
1500 A and produce an internal field of 1.8 T.

Proportional Drift Tubes

The central muon system is assembled from drift chambers that consist of a row of 24
cells, each with a sense wire running parallel to the magnetic field lines in the toroid mag-
net. The cells have a cross section of 5.5 cm x 10 cm and are 240 cm long. The inner layer
(A-layer) is four chambers deep and the outer layers (B and C-layer) are three chambers
deep. The drift direction is parallel to the z-coordinate, with an expected resolution of
around 0.5 mm. The PDTs are discussed in more detail in [73].
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Mini Drift Tubes

The forward muon system is made from individual tubes with 8 cells of 1 cm x 1 cm
cross section, each holding one wire. As in the central system, the A-layer is four layers
deep. It is located at |z| = 447 cm. The B and C-layer are each three layers deep, and
are located at |z| = 630 cm and |z| = 827 cm. Shielding around the beam-pipe has been
implemented to reduce the radiation dose from beam remnants. The MDTs are discussed
in more detail in [74].

Scintillation Counters

Scintillator counters are installed both in the central and forward regions: two or three
layers of scintillator pixels in the forward, A-layer counters and BC counters in the central
region. Scintillators are read out with both a 15-20 ns “trigger” gate, and a 80-100 ns “read
out” gate. The counters have a φ segmentation of 4.5 degrees and are used for triggering,
cosmic ray veto, beam related muon rejection and track reconstruction. The scintillator
counters are discussed in more details in [75].

Shielding

Three sources contribute to backgrounds in the central and forward muon system:

• Scattered proton and antiproton fragments that interact with the end of the calorime-
ter or with the beam pipe produce background in the central and forward A layer.

• Proton and antiproton fragments, mostly muons from the decays of pions created by
proton and antiproton interactions upstream of the detector, interacting with the low
beta quadrupole magnets produce hits in the B and C layers of the forward system.

• Beam halo interactions affect both the central and the forward muon system.

The shielding consists of layers of iron, polyethylene and lead in a steel structure, sur-
rounding the beam pipe and the low beta quadrupole magnets. Iron is used as a hadronic
and electromagnetic absorber, polyethylene is a good absorber for neutrons due to its high
hydrogen content, and lead is used to absorb gamma rays.
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3.2.6 Trigger System

The overwhelming majority of proton antiproton collisions results in collisions of little
interest. Collisions which produce massive particles such as W , Z bosons and top quarks,
or those which might provide evidence for new physics occur extremely rarely. To ac-
cumulate a large sample of events of interest without having to store and reconstruct a
staggering number of uninteresting collisions, DØ employs an event trigger which de-
cides whether to store an event or to disregard it. At the Tevatron, an input bunch crossing
rate of 2.5 MHz must be reduced to a final data taking rate of 50 Hz, a limit given by the
offline reconstruction capabilities. The trigger system is a three-tiered pipelined system;
each tier examines the event in more detail than lower tiers and restricts the input rate of
events to higher tiers.

Level 1 Trigger

Collisions occur at a rate of 1.7 MHz. The first trigger stage (Level 1 or L1) has a pipeline,
which allows to take a decision within 4.2 μs, and has a trigger accept rate of about 2 kHz.
The trigger algorithm is carried out in a framework of field programmable gate arrays
(FPGAs), which receive as input simple objects created in the luminosity monitor, the
calorimeter and the muon system.

Level 2 Trigger

In the second stage (Level 2 or L2), hardware engines associated with specific subdetec-
tors process information which is then used in a global processor to determine correlations
between different detectors, e.g. to match tracks and leptons. Level 2 has an accept rate
of 1 kHz with a maximum dead-time of 5%, and a maximal latency of 100 μs.

Figure 3.15 illustrates the design of the DØ Level 1 and Level 2 trigger system. The
components currently being commissioned are represented as hatched boxes.

Level 3 Trigger

The third stage (Level 3 or L3) uses a collection of approximately 100 PC farm nodes to
perform a partial reconstruction of the event and take a trigger decision using the full event
information (complete physics objects as well as their correlations). The nominal 1 kHz
input rate is reduced to a rate of 50 Hz at which data are recorded for offline analyses. The
online version of the event reconstruction is optimised to fit into the timing requirements
(∼50 ms) at Level 3.

When an event passes the Level 2 decision, the data from the roughly 80 readout
crates are sent to a single farm node, where the event reconstruction takes place. Filters
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Figure 3.15: The design of the DØ Level 1 and Level 2 trigger system.

can select events based on physics quantities. A single farm node handles events at a rate
of 10-20 Hz. Events that pass a Level 3 filter are sent from the farm node to a collector,
which in turn sends the events over Gbit/s optical Ethernet to FERMILAB‘s Feynman
Computing Center, where the events are written to tape for offline analysis.
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Event Reconstruction and Object
Identification

The raw event data collected from the complete detector consist of hit information from
nearly a million detector channels. This information has to be processed in order to extract
the information required to reconstruct the physics event.

Various algorithms are used to process the huge amount of raw detector information
and to define basic physics objects and their properties, representing the particles gener-
ated in the collision. The detector design allows to distinguish and to define the following
fundamental objects: tracks, primary vertex, electrons, photons, muons, jets and their
flavour, and missing transverse energy �ET .

Generally, the object reconstruction and identification is optimised for efficiency and
purity, and to provide the best possible measurement of the magnitude and direction of
the object’s momentum. Other objects in the event, such as particles that do not originate
from the primary pp collision or noise generated in the detector components or the readout
electronics can mimic the object signature, thereby degrading the purity.

In this chapter, the objects used in this analysis, namely tracks of charged particles,
primary vertices and muons are described.

4.1 Tracks of Charged Particles

Charged particles, bent in the magnetic field, generate hits in the central tracking system
from which tracks are reconstructed. The reconstruction is abstracted in two parts. The
first part is hit clustering, which groups individual channels that are likely to have been
generated by the passage of an individual particle through the detector. If particles are
passing through the silicon vertex detector, they will deposit charge in a number of strips.
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A particle traversing the central fibre detector will cause a number of fibres to scintillate.
In both cases, a cluster is defined as a group of adjacent strips or fibres above a noise
threshold. The second part of the reconstruction is the track finding, which is again sub-
divided into two algorithms: pattern recognition and track fitting. The pattern recognition
creates sets of clusters which lie along physical paths. The track fitting uses sophisticated
algorithms (Kalman fitter) to fit a candidate charged particle track to a physical path, using
a χ2 test. For the track fitting the algorithm described in [76] has been used.

A good calibration for the tracking algorithm is the reconstruction of known meson
and baryon resonances. As examples, the process K0

s → π+π− is measured with a mass
resolution of σ = 7.3 MeV and Λ0 → p+π− with σ = 2.6 MeV (Figure 4.1).
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Figure 4.1: Invariant mass distributions for the processes K0
s → π+π− (left) and Λ0 →

p+π− (right). Also shown is a Gaussian distribution plus a linear fit to the signal and
background.

4.2 Primary Vertex

A precise determination of the primary vertex position is crucial for all B physics analy-
ses. The long lifetime of the B meson distinguishes B events from background events. A
method that follows the procedure outlined in [76] has been used to determine the primary
vertex.

A primary vertex is determined for each event by minimising a χ2 function that de-
pends on all tracks in the event and a term that represents the beam spot constraint. The
beam spot is stable during the periods of time during which the proton and the antipro-
ton beams are kept colliding continously, and can be used as a constraint for the primary
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vertex fit. Therefore, the nominal beam spot is defined as the average beam position run-
by-run, where a run typically lasts several hours. The initial primary vertex candidate and
its χ2 are obtained using all tracks in the event. Next, each track is removed temporarily
from the vertex fit and the χ2 is recalculated. If the χ2 decreases by nine or more, this
track is discarded from the primary vertex fit. This procedure is repeated until no more
tracks are discarded. The achieved primary vertex resolution by using this procedure is
18 μm in the x and y directions.

4.3 Secondary Vertex

The secondary vertex algorithm begins by creating a list of all tracks that are not included
in the primary vertex. Then the same procedure as for finding the primary vertex is ap-
plied. The minimum requirement to define a secondary vertex is that it contains two
tracks of oppositely charged particles. If such a vertex is found, it is tested on the so-
called V 0 hypothesis. The compatibility of the two tracks with the decays K0

s → π+π−,
Λ0 → p+π− (where the higher pT track is assumed to be the proton, according to ob-
servations from Monte Carlo studies) and with photon conversion (γ → e+e−) is tested.
Secondary vertices are rejected if the invariant di-track mass for a given V 0 hypothesis
is consistent with the corresponding V 0 mass in a mass window defined by ±3σ of the
measured V 0 mass resolution.

The impact parameter resolution for single muon events is shown as a function of
transverse momentum in Figure 4.2. The impact parameter denotes the minimal distance
of the track to the primary vertex of the event.

As examples for the reconstruction of secondary vertices, the reconstruction of the
processes Ξ± → Λ0π± and Ω± → Λ0K± is shown in Figure 4.3, where multiple tracks
with impact parameters of the order of centimetres are reconstructed.

4.4 Muons

Muons are reconstructed using information from two detector systems: the muon detector
and the central tracker. A ’local’ track in the muon system forms the basis for muon
identification. Muons are required to have hits in all layers of the muon system (both
inside and outside of the toroid steel). The exact muon identification criteria are presented
in Sect. 4.4.1. The superior track resolution of the central tracker is used to improve the
knowledge of the kinematic properties of the muon.
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Figure 4.2: Impact parameter resolution measured in data and in simulated single muon
events. The lines show fits to data and Monte Carlo events.

4.4.1 Muon Identification Criteria

The following standard Muon ID requirements are used in the analyses presented in this
thesis:

• Muon candidates are required to be of ’|nseg| = 3 medium’ quality, according to
the certified Muon ID criteria [77]:

- at least two wire hits in the A segment,
- at least one scintillator hit in the A segment,
- at least two wire hits in the BC segment,
- at least one scintillator hit in the BC segment, (except for central

muons with less than four wire hits in the BC segment).

• The standard ’loose’ cut against cosmics is applied, based on timing information
from scintillator hits associated with the muon. The default timing cuts from the
certified Muon ID [77] are used, requiring A-layer and BC-layer scintillator times
of |tA| < 10 ns and |tBC| < 10 ns.

In addition a ‘central track match’ is required, which denotes that the muon tracks
are extended to the point of closest approach (PCA) to the beam and their parameters are
compared with those of central tracks at the PCA. For each muon track a global track fit is
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Figure 4.3: Invariant mass distributions for the processes Ξ± → Λ0π± (top left) and
Ω± → Λ0K± (bottom left). The reconstruction of the processes are examples of events
with multiple tracks with impact parameter in the order of centimetres. A sketch of the
decay Ξ− → Λ0π− → p+π−π− is also shown (right).

performed with all central tracks that fall within one radian in azimuthal and polar angle
around the muon track at PCA. The central track that gives the highest χ2-probability is
then considered as the muon candidate. The muon track parameters are then taken from
the central tracking system, since it gives a more precise measurement of these parameters
than the muon system.
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Data and Event Selection

5.1 Data Sample

The data samples used in this thesis were collected with the DØ detector in pp collisions at
a center-of-mass energy of 1.96 TeV. The data set corresponds to an integrated luminosity
of 300 pb−1 and was collected from August 2002 to June 2004. The data sample was
collected using five different trigger list versions: v8 to v12 (a trigger list version is defined
for a certain range of runs and consists of a set of well defined triggers). After the 28th

of June 2004 the trigger list was changed significantly in order to cope with the higher
initial luminosities delivered by the Tevatron. Since no reliable simulation was available
to estimate the efficiencies of the new triggers it was decided not to use data recorded with
the new version of the trigger list.

5.2 Data Quality Selection

Only a fraction of the collisions delivered by the Tevatron is actually recorded by the DØ
detector. Out of that data only the fraction for which all detector systems were functioning
well is used for the data analyses.

Data quality monitoring is performed online and offline. It is crucial for a high data
taking efficiency to catch any malfunctioning of detector components, of the readout or
of the triggering as early as possible. Online data quality monitoring makes it possible to
react fast and thus maximise the amount of heigh quality data taken.

However, there are data quality issues which cannot be recognised online. The re-
maining deficient data are eliminated by offline data quality monitoring. It is based on
the comparison of distributions of basic physics objects or other variables that describe
the detector performance with nominal distributions of the same quantities. In a second
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step, a list of possible data corruption methods is identified, quality measures are defined
with a maximum discrimination power between usable and unusable data, and criteria are
defined to classify the data quality.

Since the corruption of data can occur on time scales much smaller than the length
of a run, the classification is preferably done on the smallest possible units of data. The
data quality selection is therefore broken down into a run based, a luminosity block num-
ber (LBN) based, corresponding to approximately one minute of data taking and several
thousand events recorded, and an event-by-event based selection. The analyses presented
here, however, did not make use of the luminosity block quality criteria.

Run quality selection:
The selection of good runs is based on information stored in the DØ Run Quality
Database [78]. The requirements are summarised in Table 5.1. It is guaranteed that no
hardware failures occurred and that all readout crates are included in the readout for the
muon system [79], the SMT and the CFT. The tracking quality is particularly important
for the identification of muons originating from the secondary vertex and for building the
event variables.

Detector Quality
MUON Not Bad
SMT Not Bad
CFT Not Bad

Table 5.1: Run quality requirements.

5.3 Trigger Selection

All decay channels studied in this thesis contain two muons in the final state. There-
fore, only events passing the following di-muon triggers mu2ptxatxx fz, MU2 A L2M0,
MU2 A L3L0 and 2MU A L2ETAPHI were considered. These triggers were found to
be sufficiently robust and stable over the course of the runs and have high efficiencies. At
Level 1, the trigger mu2ptxatxx fz requires a tight muon scintillator coincidence in two
layers of the DØ muon system (c.f. section 3.2.5). The trigger 2MU A L2M0 requires
in addition at least one medium quality muon in the Level 2 trigger, consisting of a re-
constructed track based on hits in the proportional wire counters inside and outside the
magnetic toroid, as described in section 3.2.5. At least one additional Level 2 muon of
loose quality, separated from the first Level 2 muon by at minimum of 13.5o in φ and 0.15
in η, is required by the 2MU A L2ETAPHI trigger.
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The Level 1 and Level 2 trigger conditions and their implementation have not changed
over the period of data taking using the trigger list v8.x to v12.x. The same trigger effi-
ciency estimates extracted from a trigger simulation [80] applied to signal Monte Carlo
and normalisation Monte Carlo samples were therefore used for all trigger list versions.
The invariant mass spectrum for the full data set is shown in Figure 5.1. All expected
resonances in the low invariant mass region are clearly visible.
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Figure 5.1: Invariant di-muon mass spectrum of various meson resonances: ω, φ, J/ψ, ψ′

and Υ.

5.4 Monte Carlo Simulation

In general, Monte Carlo simulation methods are applied to calculate approximate solu-
tions to a variety of mathematical problems by performing statistical sampling experi-
ments. In particle physics, the term Monte Carlo simulation refers to the random genera-
tion of physical final states from the collision of two (or more) initial-state particles. The
generated particles in that final state are propagated through the detector based on their
initial momenta, and their interactions in the active and passive material of the detector
are simulated.

In order to compare the recorded data to simulated events, Monte Carlo samples for
signal and normalisation channels have been produced. This simulation allows to predict
the ideal behaviour of the detector, providing a model to which measured data can be
compared to assess detector and reconstruction performance. It also provides a prediction
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of the expected detector response to specific physical processes of interest, allowing the
detailed determination of physical distributions and selection efficiencies which enter in
the calculation of branching fractions.

All Monte Carlo samples were produced using Pythia 6.1 [81] and EvtGen [82] to
generate bb̄ events with a pT > 0.1 GeV/c and |η| < 4.2 on the parton level. CTEQ5L [83]
was used as the leading-order parton density function (PDF) for the leading-order matrix
element calculation in the Monte Carlo samples. On average, 0.8 (Poisson distributed)
minimum-bias event have been added to each simulated event.

All simulated events are passed through a full Geant [84] simulation of the DØ detec-
tor and are then reconstructed in the same way as the data.

The most time consuming step in the simulation chain is the simulation of the inter-
action of all generated particles in the material of the detector. This step involves the
determination of the trajectories of the particles as they enter into the detector, the simu-
lation of decays of particles with finite lifetimes, the simulation of multiple scattering and
energy loss as the particles interact with material in the detector and a realistic description
of the response of the detector to the energy depositions made by the particles. In order
to increase the Monte Carlo simulation efficiency cuts were applied already at the gener-
ator level to reject events, which would not have been reconstructed due to analysis cuts.
This step has to be checked to ensure that it does not introduce a bias or treats signal and
normalisation channels in a different way.

Monte Carlo samples of the following decays that are under study in this thesis were
generated:

• B0
s → μ+μ−

• B0
d → μ+μ−

• B± → J/ψ K±

• B0
s → J/ψ φ

• B0
s → ψ(2S) φ

• B± → ψ(2S) K±

On all Monte Carlo samples, the following requirements were applied at generator level:

• At least two opposite signed muons with

– muon pT > 1.5 GeV/c
– |η| < 2.5 for each muon
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• pT of the B0
s candidate > 4.0 GeV/c

where the two muons where required to come from the B0
s meson in the decay B0

s →
μ+μ− and from the J/ψ or ψ(2S) in the other cases.

For the decays with a Kaon in the final state (B± → J/ψ K± and B± → ψ(2S) K±)
this Kaon coming from the B± meson was required to have a minimum pT of 0.5 GeV/c.

For the B0
s → J/ψ φ and B0

s → ψ(2S) φ mode, in addition one φ meson coming from
the B0

s meson and decaying into two oppositely charged Kaons with a minimal Kaon pT

of 0.5 GeV/c and a pseudorapidity |η| < 2.5 for each Kaon was required.
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Optimisation

For the analyses presented in this thesis several different B meson decay channels are
selected. The similarity among the channels allow the reconstruction of the B meson can-
didate in an almost identical way by imposing similar selection criteria. The pre-selection
criteria will be discussed separately for each analysis. In addition to basic requirements,
three different variables are being used to further discriminate against background for all
analyses. These variables exploit best the distinctive properties of the B meson and are
discussed in this Chapter. Also the strategy to optimise the cut values for the discriminat-
ing variables is discussed.

6.1 Discriminating Variables

The chosen three discriminating variables are the pointing angle, the isolation and the
decay length significance. Figure 6.1 shows a sketch of these three variables for the decay
B0

s → μ+μ−

6.1.1 Pointing Angle

The pointing angle α is defined as the angle between the momentum vector of the B can-
didate and the decay length vector �lV tx pointing from the primary vertex to the secondary
vertex where all vectors are determined in three dimensions. It is used to check the con-
sistency of the direction of the decay vertex with the flight direction of the B candidate.
If the tracks used to build the B candidate originate from the decay of a parent particle
B0

s , the vector �lV tx should point in the same direction as the momentum vector of the B
candidate �p(B).
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Figure 6.1: Pictogram for visualisation of the discriminating variables for the decay B0
s →

μ+μ−.

6.1.2 Isolation

The fragmentation characteristics of the b-quark are such that most of its momentum is
carried by the B hadron. A large fraction of the momentum of the tracks observed close
to the B meson is expected to be carried by the daughter tracks of the B, thus the number
of extra tracks close to the B candidate tends to be small. The second cut parameter was
therefore an isolation variable, I, defined as:

I =
|�p(B)|

|�p(B)| + ∑
track i�=B

pi(ΔR < 1)
. (6.1)

Here,
∑

track i�=B

pi is the scalar sum of the momenta of all tracks excluding the tracks used

to build the B candidate that fall within a cone of ΔR = 1 around the momentum vector
�p(B) of the B candidate, where ΔR =

√
(Δφ)2 + (Δη)2. The z-coordinate of these

tracks must be within 5 cm of the B candidate vertex to exclude tracks from other pp
collisions that can occur during the same bunch crossing.

6.1.3 Transverse Decay Length Significance

The long lifetime of B mesons allows the use of the decay length as a strong rejection cri-
teria against mostly random combinatoric background, e.g. two fake muons that happen
to form a good vertex. The proper decay length cτ is defined as

cτ = Lxy · mB

pB
T

(6.2)
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where the transverse decay length Lxy is the projection of the two dimensional decay
length vector on the transverse momentum

Lxy =
�lxy · �pB

T

pB
T

. (6.3)

As a third cut parameter, the transverse decay length significance Lxy/δLxy was used,
since it gave a better discriminating power than the transverse decay length itself (where
large values may be due to large errors).

6.2 Random Grid Search

The idea behind Random Grid Searches (RGS) [85] is to search systematically over a
randomly selected grid of cut values for the discriminating variables, in order to aid in
the optimisation of the signal and background classification. The density of grid points
was randomly distributed following the distribution of the discriminating variables as
generated in the signal Monte Carlo. A search over such a random grid is more efficient
and consumes less computing time than a search over a regularly spaced grid (Figure 6.2).
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Figure 6.2: Visualisation of the advantage of a random grid (right side), over a regularly
spaced grid (left side) search for two variables x and y.

For each set of cut values the Monte Carlo signal efficiency and the linear interpolation
of the background from the sidebands into the signal region are calculated.
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An optimisation criterion proposed by G. Punzi [86] has been used in order to find the
optimal set of cuts. It consists in maximising the ratio P defined as:

P =
ε

a
2

+
√

NBack

(6.4)

Here, ε is the reconstruction efficiency of the signal Monte Carlo relative to a pre-
selected sample and NBack is the expected number of background events interpolated
from the sidebands. The constant a is the number of standard deviations corresponding
to the confidence level at which the signal hypothesis is tested1 The value of a should be
defined before the statistical test and has been set to 2, corresponding to about 95% CL.

The expression P has been used as an optimisation criterion in the random grid search,
since it does not push the experimental efficiency down to very small values and does not
prefer extremely low expected signal numbers over tiny background. Moreover, it can
be maximised without knowing the cross section of the searched signal. The proposal by
Punzi allows an unbiased optimisation that is free of priors or of limit setting algorithms.

6.3 Probability Density Ratio

For the search for the rare decay B0
s → μ+μ−, another multi-variate approach – a so-

called Likelihood Ratio – has been used. This method relies on the optimisation of the
probability density ratio ρs(x)/(ρs(x)+ρb(x)), based on the discriminant x = (x1, x2, x3)
with the variables xi. The probability densities ρs,b(x) are obtained by sampling over the
available phase space for the signal Monte Carlo events in case of the signal density ρs

and the data in case of the background density ρb. The isolation discriminant is largely
uncorrelated with the remaining variables and can be factored out. Therefore, 1-dim prob-
ability densities ρs,b(iso) for the isolation cut and 2-dim probability densities ρs,b(α, dl)
for the discriminant pointing angle α and decay length (dl) have been determined. The
overall density ratio was defined as

R =
ρs(iso) · ρs(α, dl)

ρs(iso) · ρs(α, dl) + ρb(iso) · ρb(α, dl)
(6.5)

1Note, that an approximated formula was used for the optimisation criterion which is taken from refer-
ence [86]. This simplified expression should be adequate for most searches and assumes that the significance
level, i.e., the probability to reject the zero-signal hypothesis H0, when it is indeed true and the confidence
level of not missing a discovery when the signal hypothesis H1 is true, are set to the same value a.
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6.4 A Multivariate Linear Classifier

In principle, any mathematical function of the cut parameters can be used as a discrimi-
nating function to separate different classes of events. In the case of Linear Discriminant
Analysis, a linear function of the form

yi = b0 + b1 · xi
1 + b2 · xi

2 + . . . + bm · xi
m

is used where b0 is a constant, b1 through bm are regression coefficients and the xi are the
independent variables. For two groups of data (signal and background) the parameters
bi have to be determined in such a way that the discrimination between the groups is
best. The interpretation of the results of a two-group problem is that those variables with
the largest (standardised) regression coefficients are the ones that contribute most to the
prediction of group membership. If only two variables are used, the separator between the
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Figure 6.3: Visualisation of the the idea of separating two groups with a linear discrimi-
nant and indicating with a line the best separation of the two groups.

groups will become a line as indicated in Figure 6.3. If three independent variables are
used, the separator is a plane and if more than three variables are present, the separator
becomes a hyper-plane. The optimal separation of two groups is achieved, by maximising
the distance to the separator using the so-called Mahalanobis metric or quadratic distance.
It measures the separation of two groups of objects with means x̄1 = (x1

1, x
1
2, . . . , x

1
m)T

and x̄2 = (x2
1, x

2
2, . . . , x

2
m)T . The sample covariance matrix of the two groups is C and

the Mahalanobis distance is then given by:

d2
x̄1,x̄2 = (x̄1 − x̄2)T C (x̄2 − x̄1).
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The logistic regression analysis chosen here is very similar to the standard linear
discriminant method described above, but it does not rely too much on the data being
normally distributed. As multivariate input, the three variables isolation, decay length
significance and pointing angle as introduced above have been used.

The goal was to evaluate the background rejection performance applied to the obser-
vation of the B0

s → ψ(2S) φ decay using a multivariate method, which is expected to give
a better efficiency than the RGS using the Punzi criterion.



Chapter 7

Calculating Limits

7.1 Probabilities

The most common definition of a probability is the Frequentist approach. If an identical
experiment is performed N times, and a certain outcome A occurs M times then the
probability p(A) for the event A to occur tends to the ratio M/N as N → ∞. The
set of all N cases is called a collective or ensemble and can be obtained by repeating one
experiment N times or by measuring N experiments simultaneously. This is a very useful
definition but also has some problems. One problem is the repeatability of an experiment.
How can it be ensured that the conditions between the experiments have not changed
and that the initial conditions are exactly the same? The next problem is that the limit
N → ∞ in a strict mathematical interpretation does not exist. How can one deduce from
N experiments the outcome of the N + 1st experiment? Also, when does it converge to
the limit? Nobody can perform an infinite number of experiments.

Another definition is that of a subjective probability, also known as the Bayesian def-
inition of probability. This definition is based on the plausibility or credibility of the
observed occurrence. It allows to test the probability of a hypothesis, which is not defined
in the Frequentist approach. In the Bayesian definition, the actual knowledge about the
observed event is taken into account, which makes this definition of probability subjec-
tive. The probability p(A) depends on the information the observer has and transforms
it into a degree of belief. If subsequent experiments are performed, the initial degree of
belief can be modified, depending on the additional information obtained.

7.2 Confidence Intervals

A confidence interval [amin,amax] is a random interval which contains an unknown pa-
rameter a with a probability 1 − α, with 1 − α also called the confidence level (CL). In
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the Frequentist approach, the confidence interval is defined by its coverage. If the true
value of a parameter a is measured in a large number N of experiments, then in the limit
N → ∞, the fraction 1 − α of all constructed intervals will contain the true value of a.
The construction of a confidence interval has to ensure this coverage for all possible true
values of a.

In one dimension an interval [x1(a), x2(a)] can be defined for each true value of a,
which has to fulfil the relation

P (x1(a) ≤ x ≤ x2(a)|a) =

x2∫
x1

f(x|a) dx = 1 − α (7.1)

with f(x|a) being the conditional probability density to observe x for a given true value
of a. For an observed value x, the borders of the confidence interval for a are amin and
amax and then given by:

amax = x−1
1 (a)

amin = x−1
2 (a)

If the true value a is greater than amax or smaller than amin then the probability of a
measurement inside this intervall [amin,amax] is α.

In cases where the probability density function is a Gaussian with mean a and variance
σ2

a, the interval covered by â±σ̂a corresponds to the confidence interval with a confidence
level of 68.3 %, where â and σ̂a are the obtained estimator of the Gaussian probability
density function.

For two sided confidence intervals, the probability 1−α alone is not sufficient to fully
determine amin and amax uniquely. One commonly used definition is the central interval,
where the probabilities above and below the confidence interval are equal, i.e.,

P (x ≤ x1|a) = P (x ≥ x2|a) = α/2. (7.2)

Two other useful forms are the one-tailed limits, namely the upper and lower limits. At a
given confidence level, the probability for the upper limit (amin = −∞) is given as

P (x ≤ x1|a) =

x1∫
−∞

f(x|a) dx = 1 − α or P (a ≤ amax) = 1 − α (7.3)

and that for the lower limit (amax = ∞) as

P (x ≥ x2|a) =

∞∫
x2

f(x|a) dx = 1 − α or P (a ≥ amin) = 1 − α. (7.4)
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7.3 Confidence Intervals for Poisson Distributions

In a counting experiment, the measurements can only assume integer values, namely the
number of observed events (nobs). The distribution of nobs will be a binomial or, for a
large number of experiments and small probabilities, a Poisson distribution. For a Poisson
distribution with mean λ, the probability to observe nobs events is given by

P (nobs; λ) = e−λ λnobs

nobs!
. (7.5)

An upper limit λ+ at a given CL of 1 − α with nobs is given by

1 − α =
∞∑

i=nobs+1

P (i; λ+) (7.6)

α =

nobs∑
i=0

P (i; λ+). (7.7)

In an analogous way, one can get the lower limit λ− of the mean value λ by solving the
equations

α =
∞∑

i=nnobs

P (i; λ−) (7.8)

1 − α =

nobs−1∑
i=0

P (i; λ−). (7.9)

However, the above mentioned equations represent an ideal situation, as usually the
number of observed events will be a sum of signal and background events, with mean
values λS and λB and a given uncertainty related to the background estimation. The
probability to observe nobs events is then given by

W (nobs) =

nobs∑
i=0

nobs∑
j=0

Psig(i; λS)Q(j; λB)δi+j,nobs
=

nobs∑
i=0

P (i; λS)Q(nobs − i; λB) (7.10)

with Q(j; λB) the probability distribution of the background events. The sum runs over
all possible combinations of background events i and signal events j which sum up to the
observed number of events nobs. If the background is also a Poisson distribution, Eq. 7.10
can be written as

W (nobs) =

nobs∑
i=0

P (i; λS)P (nobs−i; λB) = P (nobs; λS +λB) =
e−(λS+λB) · (λS + λB)nobs

nobs!

(7.11)
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From this it follows that the probability α to observe nobs or fewer events is given by

α =

nobs∑
k=0

W (k) =

nobs∑
k=0

P (k; λS + λB) (7.12)

which has to be solved for λS in order to calculate an upper limit for a given CL.

This method breaks down when the number of observed events is small compared to
the expected number of events, especially when no events are observed at all. In this case,
one has to modify Eq. 7.12 to [87]

α =

nobs∑
k=0

P (k; λS + λB)

nobs∑
k=0

P (k; λB)

, (7.13)

such that the number of background events is always smaller or equal to the number of
observed events.

Recently, the so-called unified approach has been suggested by Feldman and Cousins
[88]. This approach introduces two significant improvements compared to classical meth-
ods. The first advantage is that it automatically switches of the calculation from a single-
sided limit to a two-sided confidence interval. The other improvement was the introduc-
tion of a Likelihood ordering scheme, which avoids unphysical confidence intervals.

7.4 Confidence Intervals for the Bayesian approach

In the Bayesian approach, the parameters to extract are treated as random variables. The
combined probability density f(x; a) for a parameter a and a random variable x is given
by Bayes’ theorem,

f(x; a) = f(x|a)g(a) = f(a|x)h(x) (7.14)

f(a|x) =
f(x|a)g(a)

h(x)
(7.15)

where g(a) and h(x) are probability densities that depend only on one variable. The
probability density g(a) is the so-called Prior of the observation of x. This means that a
probability density for the parameter a is chosen before the experiment is performed and
gives the a priori probability for a before the measurement of x. For a given observation x,
the conditional probability f(x|a) can be identified with the Likelihood function L(x, a).
The probability density h(x) is a multiplicative factor which is independent of a and
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can be eliminated by requesting normalisation. In the Bayesian approach the confidence
interval can be calculated via

f(a|x) =
L(x, a)g(a)

+∞∫
−∞

L(x, a) g(a)da

(7.16)

where f(a|x) is the posterior probability for a, and gives the probability density distribu-
tion for a after the data x has been obtained. The chosen Prior has to fulfil the normalisa-
tion to keep the denominator finite.

In case of a Poisson distribution P (nobs; λs) with nobs observed events and a signal
rate of λs, one obtains in the Bayesian approach

P (λs|nobs) =
L(nobs|λs)P (λs)

∞∫
0

L(nobs|λs)P (λs)dλs

. (7.17)

Equation 7.17 has to be integrated, to obtain an upper limit (or confidence interval) for
the unknown parameter λs. Including background, λB, Eq. 7.17 reads as

P (λs|nobs, λB) =
L(nobs|λs + λB)P (λs)

∞∫
0

L(nobs|λs + λB)P (λs)dλs

. (7.18)

The values obtained from the Bayesian approach obviously depend on the chosen
Prior, i.e., on P (λs). If the Prior density is unknown, one can assume a uniform density
over a certain interval. This flat Prior is, however, just a convention and it would be better
to use a class of Priors. In some cases it is suggested to use a Prior which behaves like
a ∝ s−p or a ∝ e−ks where s is directly related to the signal rate. If the chosen Prior for
a rare process gives more weight to a region with s = 0, the limit will be better or more
optimistic compared to a flat Prior. If on the other side, the Prior distribution gives more
weight to large values of s, the limit will be worse.

Choosing a flat Prior for a Poisson distribution, the result for the Bayesian confidence
interval is the same as in the classical expression of Eq. 7.13. This also holds in the
presence of background.

7.5 Confidence Intervals and Systematic Uncertainties

Usually the estimation of the background λB has an uncertainty σλB
with a probability

density that can be assumed as a Gaussian G(λB, σλB
). The upper limit can be obtained
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by integrating over the uncertainty σλB
of the background. This modifies Eq. 7.13 to

α =

∫
g(λB)

nobs∑
k=0

P (k; λS + λB)dλB

∫
g(λB)

nobs∑
k=0

P (k; λB)dλB

. (7.19)

There exists no analytic recipe for including systematic uncertainties in the construc-
tion of the confidence interval. The most common procedure [89] is to use a Bayesian
approach, where the systematic uncertainties on the background or signal efficiency are
parametrised by e.g. Gaussian distributions and convolved with probability density func-
tions. As an example, consider a counting experiment with detector acceptance A and
uncertainty σA that expects a background λB with an uncertainty σλB

and observes nobs

events. The upper Poisson limit on the signal λS can then be defined as in Eq. 7.13 by
integrating over the systematic uncertainties:

α =

nobs∑
k=0

1
2πσλS

σλB

∞∫
0

∞∫
0

P (k; λ′
S + λ′

B)e
− (λB−λ′

B)2

2σ2
λB e

− (λS−λ′
S)2

2σ2
λS dλ′

sdλ′
B

nobs∑
k=0

P (k; λ′
B)e

− (λB−λ′
B

)2

2σ2
λB dλ′

B

. (7.20)

The uncertainty σλS
on the signal λS has been expressed by σλS

= λS · σA/A. This
integral has to be solved to find an upper limit with CL α on the signal rate λS . In practice
this integral can be solved by Monte Carlo integration methods.

7.6 Observing fewer Events than Expected

In the case that significantly less events are observed than expected, the unified Frequen-
tist approach [88] (aka Feldman-Cousins) and the Bayesian approach for calculating up-
per limits differ substantially. In particular, for zero observed events a Bayesian upper
limit is independent of the number of expected background events, whereas in the uni-
fied Frequentist approach the upper limit decreases when more background is expected.
The question which treatment is correct, depends on how one links confidence intervals
to probabilities, to either the probability of a hypothesis given an observed set of data
(Bayes) or to the probability of observing a set of data given a hypothesis (Frequentist).
In case of fewer events observed than expected it is recommended to quote both, the
Feldman-Cousins and the Bayesian limit. Another suggestion for such cases is to refer to
the sensitivity or expected upper limit, which is a reasonable quantity to judge how large
the actual observed limit fluctuated from its mean.
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7.7 Expected Upper Limit

If the number of observed events remains unkown, as in the case of a “blind box” anal-
ysis, one can calculate the “expected upper limit” without knowing the number of signal
events. The “expected upper limit”, which is the ensemble average of all expected limits
in the absence of a signal for a hypothetical repetition of the experiment, is identical to the
“sensitivity”1 defined in the unified approach of classical confidence interval construction
by Feldman and Cousins [88]. Assuming that there is only background λB one can cal-
culate for each possible value of observation nobs a 95% C.L upper limit μ(nobs, λB). The
average upper limit on the number of signal events 〈μ(λB)〉 is then obtained by weighting
each limit from the hypothetical ensemble by its Poisson probability of occurrence:

〈μ(λB)〉 =
∞∑

nobs=0

μ(nobs, λB) · (λB)nobs

(nobs)!
exp(−λB). (7.21)

1In [90] it is proposed to refer to this quantity as “exclusion potential”.



Chapter 8

Search for the Decay B0
s → μ+μ−

In this Chapter the search for the rare decay B0
s → μ+μ− will be presented. The mea-

surement of a branching fraction requires the determination of the integrated luminosity
or the normalisation to a similar decay with a known branching fraction. For this search
the decay of B± → J/ψ K± with J/ψ → μ+μ− has been used for normalisation. The
search was performed as a “blind box” analysis, with the signal region hidden during all
analysis steps. The strategy of the analysis is to start with a pre-selection and then use
discriminating variables in an optimisation procedure to further reduce the expected back-
ground. The estimation of the background in the signal region is obtained by interpolating
the remaining background from sidebands into the signal region.

8.1 Pre-selection Requirements

The B0
s candidate event signature for the signal channel under study consists of two muons

giving an invariant mass of the B0
s mass. Figure 8.1 shows the expected mass resolution

from a Monte Carlo simulation for B0
s → μ+μ−. A Gaussian fit yields a value of 88 MeV,

whereas the mass difference between B0
s and B0

d is just 90 MeV [4]. Therefore, the
mass resolution is not sufficient to readily separate B0

s from B0
d . Considering the largely

suppressed branching fraction, however, the decay B0
d → μ+μ− was not considered as a

potential signal.

Event (pre-)selection started with requiring two muons identified by extrapolating
charged tracks reconstructed in the central tracking detectors to the muon detectors, and
matching them with hits in the latter. The muons had to form a common 3D-vertex with
an invariant mass between 4.5 and 7.0 GeV/c2 and a χ2/d.o.f. of less than 10.

The transverse momentum, pT , of each of the muons was required to be greater than
2.5 GeV/c and |η| less than 2.0 to be well inside the fiducial volume of the detector. Tracks
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Figure 8.1: The mass resolution in the signal Monte Carlo after pre-selection.

that were matched to each muon were required to have at least three hits in the SMT and
four hits in the CFT. To select well measured secondary vertices, the two-dimensional
decay length in the plane transverse to the beamline (Lxy) was determined, and the error
(δLxy) on it was required to be less than 150 μm. Lxy was calculated as

Lxy =
�lV tx · �pB

T

pB
T

, (8.1)

where, �lV tx represents the three-dimensional vector pointing from the primary vertex to
the secondary vertex. The error on the transverse decay length, δLxy, was calculated by
taking into account the uncertainties in both the primary and secondary vertex positions.
The primary vertex itself was found for each event using a beam spot constrained fit as
described in Section 4.2. To ensure a similar pT dependence of the μ+μ−-system in the
signal as in the normalisation channel, the transverse momentum of the candidate Bs, pB

T ,
had to be greater than 5 GeV/c. Figure 8.2 shows the pT (μ+μ−) spectra for the signal and
the normalisation channel B± → J/ψ K± in Monte Carlo after the pre-selection cuts.

In data, a total of 45’696 signal candidate events survived the pre-selection require-
ments. The effect of the various pre-selection criteria on data events is shown in Table 8.1.

The final event selection was performed using further discriminating variables that
were already introduced in Section 6.1.
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Figure 8.2: The Monte Carlo simulated pt(μ
+μ−) spectra for the signal (right) and the

normalisation channel (left) after the pre-selection.

Cut Value #candidates
Good vertex 5’826’444
Mass window ( GeV/c2) 4.5 < mμ+μ− <7.0 615’873
Muon Quality two medium 399’136
χ2/d.o.f. of vertex < 10 253’321
Muon pT ( GeV/c) > 2.5 154’305
|η| < 2.0 149’791
Tracking hits CFT> 3, SMT > 2 110’099
δLxy (mm) < 0.15 107’925
B0

s Candidate pT ( GeV/c) > 5.0 45’696

Table 8.1: Number of candidate events surviving the cuts in data used in the pre-selection
analysis.

8.2 Optimisation of Discriminating Variables

Before the optimisation of the discriminating variables, the mass region of interest was
restricted to 4.53 GeV/c2 < Mμ+μ− < 6.15 GeV/c2, containing the signal region. The
whole mass region of interest is shifted downward with respect to the world average
B0

s mass by 30 MeV/c2 in order to correct for the mass scale of the DØ tracker. The
30 MeV/c2 mass shift valid at the scale of the B-meson mass was determined by a
linear extrapolation of the measured mass shifts between the J/ψ(→ μ+μ−) and the
Υ(→ μ+μ−) resonances with respect to their PDG-values. This shift by 30 MeV/c2 is
smaller than the expected mass resolution at the B0

s mass, which is 90 MeV/c2.

The signal region is blinded during the optimisation of cuts to avoid overtuning of the
cuts into statistical fluctuations as well as biases in the optimisation procedure. Table 8.2
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Figure 8.3: Invariant di-muon mass distribution of data events after the pre-selection. A
total of 45’696 events remain.

defines the mass ranges for the sidebands and the blinded signal region that were used.
The given values translate the size of the blind signal region to a window of ±270 MeV/c2

around the expected reconstructed B0
s mass. The ±270 MeV/c2 corresponds to approxi-

mately ±3σ of the expected mass resolution for B0
s → μ+μ− in the Monte Carlo. After

the cut optimisation the blinded signal region was shrunk to a width of ±2σ for the cal-
culation of the limit. The inner limits of the sidebands were chosen to be 3σ away from
the shifted B0

s mass. The width of the sidebands that are used for background estimation
was set to 6σ each.

Table 8.2: The different di-muon invariant mass regions for signal and sidebands used for
background estimation.

Region min Mass ( GeV/c2) max Mass ( GeV/c2)
region of interest 4.530 6.150
blinded signal region during optimisation 5.070 5.610
final blinded signal region for search 5.160 5.520
sideband I 4.530 5.067
sideband II 5.610 6.150
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8.2.1 Random Grid Search

With these definitions, the optimisation on the three discriminating variables was per-
formed as described in Section 6.2. The sideband data sample used during this optimisa-
tion corresponded to about 90 pb−1, i.e., a third of the total data sample. The result for the
cut combination which maximised the figure of merit P of Eq. 6.4 is shown in Table 8.3.

Table 8.3: The optimised set of cuts and their relative Monte Carlo signal efficiencies
after maximising the figure of merit P .

cut parameter cut value Monte Carlo efficiency (%)
Pointing angle α (rad) < 0.2 83.4 ± 0.4
Decay length significance > 18.5 47.5 ± 0.8
Isolation > 0.56 97.4 ± 0.3

The distributions of the three discriminating variables for signal Monte Carlo and
sideband data are shown in Figure 8.4.

The total signal efficiency of the three discriminating cuts relative to pre-selection is
38.6±0.9%. After a linear extrapolation of the sideband population for the whole data
sample into the final signal region, an expected number of background events of 4.3±1.2
was obtained. This corresponds to a background rejection of 99.93%.

8.2.2 Likelihood Ratio

In an earlier stage of the analysis, an event classifier based on a probability density ratio
(Likelihood Ratio (LHR), see Section 6.3) was studied. The isolation, pointing angle and
decay length were used as discriminating variables. The LHR variable R is shown on the
left side in Figure 8.6 and the signal efficiency versus background rejection for this Like-
lihood Ratio is shown on the right side. With a different data sample of ≈ 200 pb−1 it was
found that the background rejection is worse (99.91%) than for an analogous optimisation
using the RGS (99.985%). This reduced background rejection would increase the number
of expected background events in the data sample quite significantly leading to almost
36 background events in the signal region, compared to three for the RGS. Although the
achieved signal efficiency would have been increased from 21% in the RGS to 43%, it
was therefore decided not to pursue this optimisation method further.
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data events from the sidebands. The arrows indicate the cut values that were obtained
after optimisation. The normalisation is done on the number of signal Monte Carlo and
sideband data events after pre-selection.
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inating variables. The line shows the linear fit to determine the expected background.
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8.3 The Normalisation Channel B± → J/ψ K±

In order to obtain a branching ratio limit for B0
s → μ+μ−, the decay chain B± → J/ψ K±

with J/ψ → μ+μ− was used as normalisation. The J/ψ decaying into μ+μ− has the big
advantage that the μ+μ− efficiencies cancel to a large extent. Therefore, the same cuts on
the discriminating variables were applied to the muons from J/ψ decays from B± as in
the B0

s → μ+μ− search.

The standard selections for B± mesons were applied as follows: The J/ψ vertex fit
of the two muons was required to have a χ2 per d.o.f. of not more than 10, similar to
the μ+μ− vertex criterion in the B0

s search. The combined vertex fit of the J/ψ and the
additional K± should not yield a χ2 for three d.o.f of more than 20. The pT of the K±

should be larger than 0.9 GeV/c. Moreover, a collinearity between the decay length vector
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Figure 8.7: The normalisation channel B± → J/ψ K± for the full data sample after all
final cuts.

of the B± meson and the combined momentum of J/ψ and K± in the transverse plane of
at least 0.9 is required.

The mass spectrum of the reconstructed B± → J/ψ K± for the full data sample is
shown in Figure 8.7. A fit using a Gaussian function for the signal and a second order
polynomial for the background yielded 906 ± 35 ± 22 signal events, where the first un-
certainty is statistical and the second due to systematics estimated by varying the fit range
and background shape hypothesis. The mass resolution of the B± is 40.7 MeV/c2, which
agrees reasonably well with the resolution of 36 MeV/c2 obtained in the Monte Carlo
simulation. The B± mass for the B± → J/ψ K± selection is in the data 5278 MeV/c2,
which is just 1 MeV/c2 below the PDG mean value of the B± meson.

The selection efficiencies for data and Monte Carlo events for the cuts on the discrim-
inating variables are shown in Table 8.4 and show a reasonably good agreement. The data
efficiencies were estimated using the fit procedure described above after various cuts and
are relative efficiencies. The distributions of the variables are shown in Figure 8.8.

Instead of B± → J/ψ K±, one could also use B0
s → J/ψ φ as normalisation channel.

Normalising to the decay mode B± → J/ψ K± is , however, preferable, since this mode
yields higher statistics and the branching ratio and lifetime are well known from measure-
ments at CLEO and the asymmetric B factories. In addition, understanding the efficiency
to detect B0

s → J/ψ φ events is complicated by the presence of different CP components
which have different lifetimes. Finally, normalising to the mode B0

s → J/ψ φ does not
completely eliminate the systematic uncertainty due to the fragmentation ratio, since all
current calculations of the branching ratio for this mode use this ratio.
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Table 8.4: Efficiencies for the discriminating variables of data and Monte Carlo events for
the normalisation channel B± → J/ψ K±.

cut parameter cut value Data efficiency (%) Monte Carlo efficiency (%)
Pointing angle α (rad) < 0.2 89.7 ± 0.8 94.1 ± 0.5
Decay length significance > 18.5 56.5 ± 1.8 59.2 ± 1.4
Isolation > 0.56 94.0 ± 0.9 96.3 ± 0.5

8.4 Deriving an Upper Limit

To calculate an upper limit on the decay, B0
s → μ+μ−, the number NB±=906±35±22

of reconstructed events of the decay B± → J/ψ K± have been used as normalisation, as
explained in Section 8.3. The branching fraction B(B0

s → μ+μ−) can then be calculated
as (see Appendix A for the derivation):

B(B0
s → μ+μ−) ·

⎛
⎝1 + R ·

ε
B0

d

μ+μ−

ε
B0

s

μ+μ−
· b → B0

d

b → B0
s

⎞
⎠ = (8.2)

μ(nobs, nback)

NB±
· εB±

μ+μ−K±

ε
B0

s

μ+μ−
· b → B±

b → B0
s

· B(B± → J/ψ K±) · B(J/ψ → μ+μ−)

where

• μ(nobs, nback) is the upper limit on the number of observed events at a chosen CL
for nobs observed events with nback expected background events;

• ε
B0

s

μ+μ− and εB±
μ+μ−K± are the efficiencies for the signal and normalisation channels,

obtained from Monte Carlo simulations;

• b → B0
s , b → B± and b → B0

d are the fragmentation fractions of b or b̄ quark to a
B0

s , a B± or a B0
d meson, respectively. The ratio which enters in the equation was

calculated using the latest world average values [4] for the fragmentation for Bu,d

and B0
s mesons, respectively1. For the uncertainty on the fragmentation ratio, a full

anti-correlation between the two was assumed and (b → Bu,d)/(b → B0
s ) = 3.70±

0.47 has been obtained. This fragmentation ratio was determined by measurements
1Note that the Monte Carlo uses simply (b → B0

s )/(b → Bu,d) = 3/10 which need to be corrected for
when calculating B(B0

s → μ+μ−) from equation 8.2
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from LEP, SLD and Tevatron. If only measurements of the fragmentation fractions
from the Tevatron are used, the average is (b → Bu,d)/(b → B0

s ) = 3.32 ± 0.59.
This is slightly different from the world average value and is dominated by the
comparison of the mixing probabilities between B0

s and B0
d mesons, χs and χd.

Using only Tevatron data alone would improve the upper limit by 15%;

• B(B± → J/ψ K±) = (1.00 ± 0.04) × 10−3 and B(J/ψ → μ+μ−) = (5.88 ±
0.1)% [4]; and

• R·εB0
d

μ+μ−/ε
B0

s

μ+μ− is the branching fraction ratio B(B0
d)/B(B0

s ) of B0
d,s mesons decay-

ing into two muons multiplied with their efficiency ratio. In the Standard Model, R
is given by R = τ(B0

d)/τ(B0
s ) · mB0

d
/mB0

s
· f 2

B0
d
/f2

B0
s
· |Vtd|2/|Vts|2, where τB0

d,s
are

the lifetimes of the B-mesons and fB0
d,s

the meson decay constants. The relation on
the branching fraction ratio holds in fact for all new physics models that are obeying
Minimal Flavour Violation. The ratio ε

B0
d

μ+μ−/ε
B0

s

μ+μ+ was determined from simulation
to be 0.92 ± 0.04, with the uncertainty due to limited Monte Carlo statistics.

To simplify the calculation of the upper limit on the branching fraction B(B0
s →

μ+μ−) it was assumed that there are no contributions from B0
d → μ+μ− decays (R ≈ 0)

in the search window centred around the B0
s mass. This assumption is acceptable since

the decay is suppressed by |Vtd/Vts|2 ≈ 0.04 in the Standard Model. Any non-negligible
contribution due to B0

d decays (R > 0) would make the obtained branching fraction
B(B0

s → μ+μ−) as given in Eq. 8.2 smaller. Thus, the presented limit for B(B0
s → μ+μ−)

is in that context conservative.
The efficiencies ε

B0
s

μ+μ− and εB±
μ+μ−K± are the global signal efficiencies for the search

signal and normalisation channel, respectively, including the pre-selection cuts and ac-
ceptance. They were determined from Monte Carlo to be ε

B0
s

μ+μ− = (7.02 ± 0.12) × 10−4

and εB±
μ+μ−K± = (5.06 ± 0.14) × 10−4, where the uncertainties are due to Monte Carlo

statistics. The quoted efficiencies refer to Monte Carlo events that passed the trigger sim-
ulation and hence include the trigger efficiency. The value for the raw efficiency ratio is
found to be εB±

μ+μ−K±/ε
B0

s

μ+μ− = 0.71 ± 0.02. Note that the efficiency ratio refers to Monte
Carlo generated bb̄ events and has to be corrected for the used fragmentation ratio of 3/10
used in the Monte Carlo simulation in order to calculate the limit of Eq. 8.2.

The pT distribution of the B± in data was found to have a slightly harder spectrum
than that from Monte Carlo simulation. The pT distribution of B candidate data events
from the normalisation channel in data was compared with the Monte Carlo simulation
prediction and a weighting function was obtained. The Monte Carlo events of the sig-
nal and normalisation channels were reweighted accordingly, to ensure good agreement
between data and Monte Carlo simulation. The efficiencies were calculated using the
weighted events.
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Table 8.5: Fitted mass resolutions as predicted by Monte Carlo simulations and as seen in
the data for J/ψ and Υ(1S).

Mode σData [ MeV] σMC [ MeV] Ratio σData/σMC

J/ψ 72.0 55.0 1.31
J/ψ (from B± → J/ψ K±) 77.3 61.2 1.26
Υ(1S) 226.2 176.3 1.28

In addition, the observed widths of known μ+μ− resonances (J/ψ and Υ(1S)) are
(27±4)% larger than predicted by Monte Carlo, as shown in Table 8.5. This large
discrepancy is due to an insufficient description of the passive detector material used
in the Monte Carlo simulation after the upgrade from Run I to Run II. The ±2σMC

signal mass region using the Monte Carlo mass resolution therefore corresponds to
±1.58σData when the data mass resolution is considered, and the efficiency was cor-
rected accordingly. The final corrected value for the efficiency ratio was then found to
be εB±

μ+μ−K±/ε
B0

s

μ+μ− = 0.247 ± 0.009 (stat), where the uncertainty is due to Monte Carlo
statistics. The systematic uncertainty associated with the weighting procedure and effi-
ciency correction is discussed in Section 8.6.

8.5 Sensitivity

The analysis has used the technique of a “blind box” analysis, which means that the signal
region was kept hidden throughout all analysis steps presented so far. Before exploring
the “blinded” invariant di-muon signal mass region, one can calculate an “expected upper
limit”, as introduced in Section 7.7, without knowing the actual number of signal B0

s →
μ+μ− events. In Eq. 8.2, the upper limit μ(nobs, nback) has to be replaced by 〈μ(nback)〉.
Using the numbers presented in Section 8.4, without their statistical uncertainties, one
obtains a sensitivity of

〈B(Bs → μ+μ−)〉 = 3.6 × 10−7 at a 95% CL. (8.3)

After the cut optimisation and calculation of the sensitivity, its dependence on the
choice of the width for the final blinded signal region was investigated. The number of
expected background events from a linear interpolation from the sidebands was calculated
for signal regions varying from ±1.5σMC to ±2.5σMC in width, and the expected sensi-
tivity was calculated. The maximial sensitivity for the cut conditions quoted in Table 8.3
was achieved for a final signal width of about ±2σMC , which was just the default value.
The expected branching ratios are listed in Table 8.6 and exclude the uncertainties and
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corrections to the efficiency ratio, that were obtained for the different widths of the signal
region. The values presented in Table 8.6 refer to a reduced data set of 240 pb−1, with an
expected background of 3.7 ± 1.1 events.

Table 8.6: The sensitivity and total Monte Carlo signal efficiency for signal regions of
different width.

width σMC nback 〈B〉 for 95% CL MC efficiency (%)
±2.5 4.6 3.8 × 10−7 (73.2 ± 1.2) × 10−5

±2.0 3.7 3.6 × 10−7 (70.2 ± 1.2) × 10−5

±1.5 2.8 3.7 × 10−7 (63.5 ± 1.4) × 10−5

8.6 Systematic Uncertainties

All relative uncertainties that enter into the calculation of 〈B〉 are listed in Table 8.7.
The largest individual contribution is almost 13%, due to the fragmentation ratio (b →

Table 8.7: The relative uncertainties for calculating an upper limit of B

Source Relative Uncertainty [%]

εB±
μ+μ−K±/ε

B0
s

μ+μ− 7.7
# of B± → J/ψ K± 5.0
B(B± → J/ψ K±) 4.0
B(J/ψ → μ+μ−) 1.7
fb→B0

s
/fb→B± 12.7

background uncertainty 27.9

B±)/(b → B0
s ). To calculate the error on the fragmentation ratio, it was conservatively

assumed that the individual fragmentations (b → B±) and (b → B0
s ) are fully anti-

correlated. The relative statistical uncertainties on ε
B0

s

μ+μ− and εB±
μ+μ−K± are 1.7% and 2.8%

respectively. They were combined into one efficiency uncertainty assuming no corre-
lations. An additional systematic uncertainty was assigned to this ratio: The different
muon pT distribution between J/ψ → μ+μ− and B0

s → μ+μ− decays (2.3%), the track-
ing inefficiency for the additional Kaon track with respect to Monte Carlo (1%) , the
uncertainty on trigger and muon identification between data and Monte Carlo (0.7%),
the weighting procedure (6.4%) and the different resolutions (1.3%). Within the errors,
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the Monte Carlo correctly reproduces the efficiency of the cuts on the discriminating
variables when applied to the normalisation channel. This yields, with the already men-
tioned correction due the data resolution in data, a final value for the efficiency ratio of
εB±
μ+μ−K±/ε

B0
s

μ+μ− = 0.247 ± 0.009 (stat) ± 0.017 (sys).

The relative uncertainty on the number of background events is 27.9% and the B± nor-
malisation channel has a relative uncertainty of 5.0%, including statistical and systematic
effects.

The statistical uncertainty on the expected number of background events, as well as the
uncertainties on signal and background efficiencies, can be folded into the limit/sensitivity
calculation of Eq. 8.2 by integrating over probability functions which parameterise these
uncertainties. A prescription [91] for constructing a Frequentist confidence interval with
the Feldman and Cousins ordering scheme for the Monte Carlo integration was used. The
background was modelled as a Gaussian distribution with its mean value equal to the ex-
pected number of background events and its sigma equal to the background uncertainty.
The signal and background efficiency uncertainties were considered as Gaussian distribu-
tions assuming a full correlation between the two. The uncertainty on the number of B±

events was propagated into the signal and background efficiency uncertainties. The rela-
tive errors on the fragmentation ratio and on the branching ratios were taken into account.
The resulting sensitivity, including all the above mentioned statistical and systematic un-
certainties at a 95% CL, is then

〈B(B0
s → μ+μ−)〉 = 4.2 × 10−7 at 95% CL. (8.4)

8.7 Results

After a detailed review of the analysis by the DØ collaboration, the approval to explore
the signal region was given by the DØ physics coordinator. In the spirit of a “blind box”
analysis, no cut value was changed after the box was opened, only more data was added
and therefore the background estimation changed.

Four events were found in the ±2σMC signal window, while 4.3 ± 1.2 events were
expected due to background. The properties of the four signal events are listed in Table 8.8
and the mass distribution inside the unblinded signal region is shown in Figure 8.9.

The four events were checked for any anomalous behaviour by comparing their char-
acteristics to background events obtained from the sidebands. It was found that the four
signal events do not exhibit any distinctive behaviour in any of the plotted kinematical
variables and therefore they are completely consistent with background events. In the
absence of an apparent signal, a limit on the branching fraction B(B0

s → μ+μ−) (and
B(B0

d → μ+μ−)) was computed.
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Table 8.8: The four signal events that were found after opening the box.

Run# Event# Mass ( GeV) Pointing angle α (rad) Lxy/δLxy Isolation I

167190 1921022 5.416 0.147 37.7 0.591
176591 2307148 5.444 0.037 21.2 0.912
177820 13141437 5.341 0.009 29.2 0.682
188905 39723538 5.347 0.033 34.4 0.652
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Figure 8.9: The mass distribution after opening the box for the data sample with the
standard discriminating variables. Four events were found in the ±2σ region.

The resulting limit on the branching fraction at a 95% (90%) CL, including all statis-
tical and systematic uncertainties, is

B(B0
s → μ+μ−) ≤ 3.7 × 10−7 (3.0 × 10−7).

Using a Bayesian approach with flat prior and Gaussian (smeared) uncertainties [92] a
limit of

B(B0
s → μ+ μ−) ≤ 4.0 × 10−7 (3.2 × 10−7)

at the 95% (90%) CL was obtained. These limits represent an improvement of the previ-
ously published values by DØ at the 95% (90%) CL of

B(B0
s → μ+μ−) ≤ 5.0 × 10−7 (4.1 × 10−7).
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obtained with a DØ Run II dataset of 240 pb−1 [44].
The analysis is also sensitive to B0

d → μ+μ−. To calculate an upper limit on the
branching ratio for B0

d → μ+μ−, it was assumed that there is no contribution from the
decay B0

s → μ+μ−. The formula given in Eq. 8.2 was modified to

B(B0
d → μ+μ−) =

nul

NB±
·
εB±
μ+μ−K±

ε
B0

s

μ+μ−
·
ε
B0

s

μ+μ−

ε
B0

d

μ+μ−

· b → B±

b → B0
d

· B(B± → J/ψ K±) · B(J/ψ → μ+μ−)

(8.5)
with the same notations as above. The factor b → B±/b → B0

d was taken to be
unity. The event upper limit, nul, was calculated including the additional uncertainty
on the efficiency ratio ε

B0
s

μ+μ−/ε
B0

d

μ+μ− . This yields and upper limit on the branching fraction
B(B0

d → μ+μ−) at a 95% CL of

B(B0
d → μ+μ−) ≤ 11.1 × 10−8.



Chapter 9

Search for the Rare Decay
B0

s → φ μ+μ−

In this Chapter, the search for the rare decay B0
s → φ μ+μ− will be presented. For this

search, the decay of B0
s → J/ψ φ, with J/ψ → μ+μ− and φ → K+K−, was used for

normalisation. The search was performed again as a “blind box” analysis, with the signal
region hidden during all analysis steps. The strategy of the analysis was to start with a
pre-selection and then use discriminating variables in an optimisation procedure to further
reduce the expected background. The estimation of the background in the signal region
was obtained by interpolating the remaining background from sidebands into the signal
region.

9.1 Introduction

As described in Section 2.4.2, the Standard Model prediction for the decay rate of the ex-
clusive FCNC decay depends on the assumed form factor model. Also the shape of the in-
variant di-muon mass depends on the form factor model used. For the signal Monte Carlo
events, a decay model in EvtGen [82] was used which includes next-to-next-to-leading
logarithmic (NNLO) improved Wilson coefficients [21] for the short-distance part. The
form factors were obtained from QCD light cone sum rules taken from Ali et al. [22]. Just
recently, Ball et al. presented an improved form factor calculation [93]. A comparison of
the invariant mass spectra for the two muons in these two models is shown in Figure 9.1.
The difference reaches about 20% for mμ+μ− < 1 GeV/c2, while elsewhere it remains
well below 10%. The Standard Model decay rate of B0

s → φ μ+μ− is predicted to be of
the order of 1.6 × 10−6 [94].

90
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Figure 9.1: Invariant mass spectra generated with the two decay models [21, 93] before
(left) all selection cuts and the efficiency as function of the di-muon mass (right) after all
cuts for the decay model of Ali et al. [22].
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Figure 9.2: Di-muon invariant mass distribution of the loose B0
s candidate selection.

9.2 Pre-selection Requirements

The pre-selection starts with a loose selection of B0
s candidates consisting of two muons

and two oppositely charged tracks forming a good vertex. In this first selection step, the
mass of the two kaon candidate tracks was required to be between 0.980 GeV/c2 < mφ <
1.080 GeV/c2 and the mass of the B0

s candidate was required to be within 4.4 GeV/c2

< mB < 6.2 GeV/c2. The di-muon invariant mass distributions for the pre-selected
events is shown in Figure 9.2
Next, it was required that the invariant mass of the two muons is 0.5 GeV/c2 < mμ+μ− <
4.4 GeV/c2. In this mass region, the J/ψ(→ μ+μ−) and ψ(2S)(→ μ+μ−) resonances
are excluded with cut-out regions that cover ±5σ wide windows around the observed
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resonance masses as indicated in Figure 9.2. The J/ψ mass resolution obtained in data is
σ = 75 MeV/c2 while the Monte Carlo resolution is about 25% better than that.

The two muons had to be of medium quality, requiring two of the three muon layers
to have fired and a central track to be matched. The χ2/d.o.f. of the two-muon vertex was
required to be χ2/d.o.f.<10. The tracks that are matched to each muon leg had to have at
least three hits in the SMT and four hits in the CFT. In addition, the transverse momentum
of each of the muons was required to be greater than 2.5 GeV/c and their pseudorapidity η
had to be |η| < 2.0 in order to be well inside the fiducial volume of the tracking and muon
detectors. The error on the transverse decay length, δLxy, was required to be smaller than
150 μm.

In the following, the number of B0
s candidates was further restricted by requiring

pB
T > 5 GeV/c and asking the B0

s candidate vertex to fulfil χ2 < 36 for five d.o.f. The
two tracks that are combined with the two muons to the B0

s candidate should each have
pT > 0.7 GeV/c and each need at least one hit in the SMT. The two tracks forming
the φ candidate were further restricted in their invariant mass to be within 1.008 GeV/c2

< mφ < 1.032 GeV/c2. The successive cuts and the number of candidate events surviving
each cut are shown in Table 9.1.

Table 9.1: Number of candidate events in data surviving the cuts used in the pre-selection
analysis.

Cut Value #candidates
Good vertex 1555320
Mass region ( GeV/c2) 0.5 < mμ+μ− <4.4 530892

excl. J/ψ,ψ(2S)
Muon Quality two medium 276875
χ2/d.o.f. of vertex < 10 127509
Muon pT ( GeV/c) > 2.5 73555
Muon |η| < 2.0 72350
Tracking hits CFT> 3, SMT > 2 58012
δLxy (mm) < 0.15 54752
B0

s Candidate pT ( GeV/c) > 5.0 54399
B0

s χ2 vertex < 36 53195
Kaon pT ( GeV/c) > 0.7 9639
φ mass ( GeV/c2) 1.008 < mφ <1.032 2602
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9.3 Optimisation of Discriminating Variables

Before the optimisation of the discriminating variables, the mass region of interest was
restricted to 4.51 GeV/c2 < Mμ+μ− < 6.13 GeV/c2, containing the signal region around
the PDG [4] world average value of the B0

s mass of mB0
s

= 5369.6 ± 2.4 MeV/c2. The
mass region of interest was shifted downward with respect to the world average B0

s mass
by 44 MeV/c2 in order to correct the mass scale of the DØ tracker. The 44 MeV/c2 mass
shift was taken from the mean B0

s mass obtained from the fit to the B0
s → J/ψ φ mass

spectra without constraining the di-muon pair to the J/ψ mass, as will be discussed in
Section 9.4.

In this analysis, the signal region was again blinded and sufficiently well separated
from the sidebands. Table 9.2 defines the regions for the sidebands and the blinded signal
region that were used.

The selected values translate into a width of the blinded signal region of ±
270 MeV/c2 around the (shifted) world average mass value of the B0

s . The expected
mass resolution for B0

s → φ μ+μ− from Monte Carlo is ≈ 75 MeV/c2, the 270 MeV/c2

window corresponds therefore to ±3.6σ [95].

After the optimisation of the discriminating cuts the blinded signal region was shrunk
to a ± 225 MeV/c2 (±3σ) window for the calculation of the sensitivity. The inner limits
of the sidebands was chosen such that they are 270 MeV/c2 away from the expected B0

s

mass. The width of each of the sidebands that were used for the background estimation
was set to 540 MeV/c2.

Table 9.2: The different four track invariant mass regions for signal and sidebands used
for background estimation.

Region min Mass ( GeV/c2) max Mass ( GeV/c2)
region of interest 4.5156 6.1356
blinded signal region during optimisation 5.0556 5.5956
final blinded signal region for limit 5.1381 5.5131
sideband I 4.5156 5.0556
sideband II 5.5956 6.1356

With these definitions, the optimisation on the three discriminating variables, isola-
tion, pointing angle and decay length significance, was performed as described in Sec-
tion 6.2. The signal Monte Carlo for this optimisation included the charmonium res-
onances to increase the number of cut combinations. This can be justified, since the
discriminating variables do not depend on the invariant di-muon mass. The resulting cut
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Table 9.3: The optimised cuts and their relative Monte Carlo signal efficiencies including
their statistical uncertainties after maximising P .

cut parameter value Monte Carlo eff. (%)
Opening angle (rad) < 0.1 81±4
Decay length significance > 10.3 73±4
Isolation > 0.72 92±5

values that were obtained from optimising the figure of merit P of Eq. 6.4 are listed in
Table 9.3.

The distributions of the three discriminating variables is shown in Figure 9.3 for signal
Monte Carlo and sideband data.

The total signal efficiency relative to pre-selection of the three discriminating cuts was
found to be (54 ± 3)% with the uncertainty due to Monte Carlo statistics. After a linear
interpolation of the sideband population into the final signal region an expected number of
background events of 1.6±0.4 for the whole data sample was obtained. Figure 9.4 shows
the invariant mass distribution for the remaining background events populating the lower
sideband.

9.4 The Normalisation Channel B0
s → J/ψ φ

In order to obtain a branching ratio limit for B0
s → φ μ+μ−, events from the decay

B0
s → J/ψ φ with J/ψ → μ+μ− and φ → K+K− were used as normalisation. As

mentioned above, the same cuts were applied to the B0
s → J/ψ φ candidates. In addition,

the two muons were constrained to have an invariant mass equal to the J/ψ mass [4]. This
approach assumes that the non-resonant signal will be negligible compared to the reso-
nant, since the non-resonant invariant mass could fall inside the J/ψ region and therefore
appear in the B0

s → J/ψ φ signal region. In Figure 9.5 and Figure 9.6, the invariant
masses for the φ and J/ψ candidates are shown for data and Monte Carlo, respectively.
The indicated fit in all plots is the sum of a Gaussian for the signal plus a linear func-
tion for the background description. The obtained resolution for the φ candidate in data
(4.2 MeV/c2) compares well to the value of the Monte Carlo simulation (4.3 MeV/c2) .

The reconstructed B0
s → J/ψ φ mass spectrum for the full data sample is shown in

Figure 9.7. A fit using a Gaussian function for the signal and a second order polynomial
for the background yields 73 ± 10 ± 4 B0

s candidates, where the first uncertainty is due
to statistics and the second the systematic uncertainty which was estimated by varying
the fit range, background and signal shape hypotheses. The mass resolution on the B0

s is
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Figure 9.3: Discriminating variables after the pre-selection for signal Monte Carlo and
data events from the sidebands for the B0

s → φ μ+μ− analysis. The arrows indicate the
cut values that were obtained after optimisation. The normalisation is done on the number
of signal Monte Carlo and sideband data events after pre-selection.
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Figure 9.4: The remaining background for the full data sample with the standard discrim-
inating variables.
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Figure 9.5: Invariant masses obtained from data for the φ candidates (left) and J/ψ can-
didates (right).

27.3 MeV, which compares very well to the resolution of 26.2 MeV obtained in the Monte
Carlo simulation. The B0

s mass in the data from the B0
s → J/ψ φ selection turns out to

be 15 MeV/c2 below the PDG mean value for the B0
s . Using the four track invariant mass

without constraining the di-muon to the J/ψ mass, a 44 MeV/c2 shifted B0
s mass was

obtained. This is exactly what is expected for the rare signal B0
s → φ μ+μ−. Therefore, all

mass windows were shifted 44 MeV/c2 to lower invariant masses with respect to the PDG
mean value of the B0

s mass. Table 9.4 summarises the various resolutions obtained from
data and Monte Carlo for the two different mass reconstructions fits (constraining and
unconstraining the J/ψ mass). The B0

s → J/ψ φ mass spectra are shown in Figure 9.8
for data and Monte Carlo events.

A comparison of data and Monte Carlo B0
s → J/ψ φ events for various kinematical

variables is shown in Appendix B.
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Figure 9.6: Invariant masses obtained from Monte Carlo for the φ candidates (left) and
J/ψ candidates (right).
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Figure 9.7: The normalisation channel B0
s → J/ψ φ for the full data sample.

9.5 Deriving an Upper Limit

To calculate an upper limit on the branching ratio for the decay B0
s → φ μ+μ−, the

number of reconstructed events 73± 10± 4 of B0
s decaying into J/ψ(μ+μ−) φ were used

as normalisation. Thus, B(B0
s → φ μ+μ−) was calculated as:

B(B0
s → φμ+μ−)

B(B0
s → J/ψ φ)

=
μ(nobs, nback)
NB0

s→J/ψ φ
·

ε
B0

s

J/ψφ

ε
B0

s

μ+μ−φ

· B(J/ψ → μ+μ−) (9.1)

where

• μ(nobs, nback) is the upper limit on the number of observed events;
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Data Monte Carlo
no J/ψ mass constraint

Mean MeV/c2 5321.98 5365.55
σ MeV/c2 78.66 73.34

J/ψ mass constraint
Mean MeV/c2 5354.95 5368.74

σ MeV/c2 27.32 26.23

Table 9.4: Data and Monte Carlo resolution comparison for the B0
s → J/ψ φ candidates.
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Figure 9.8: Mass spectra for Data (left) and Monte Carlo (right) of the unconstraint B0
s →

J/ψ φ candidates.

• ε
B0

s

φμ+μ− and ε
B0

s

J/ψφ are the efficiencies of the signal and normalisation channels, ob-
tained from Monte Carlo simulations and

• the branching ratio B(J/ψ → μ+μ−) = (5.88 ± 0.1)% was taken from [4].

The efficiencies ε
B0

s

φμ+μ− and ε
B0

s

J/ψφ are the global signal efficiencies for the search
signal and normalisation channel, respectively, including pre-selection cuts, the accep-
tance and trigger efficiency. They were determined from Monte Carlo to be ε

B0
s

φμ+μ− =

(3.6 ± 0.2) × 10−5 and ε
B0

s

J/ψφ = (9.9 ± 0.6) × 10−5, where the uncertainties are due
to Monte Carlo statistics. The quoted efficiencies refer to triggered Monte Carlo events
using the trigger simulation only. Finally, the Monte Carlo events were weighted accord-
ing to the data/MC difference for the pT (B) distribution and a final efficiency ratio of
2.80 ± 0.21 was determined. This efficiency ratio was used to calculate the limit and an
additional uncertainty on the efficiency ratio was assigned.
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9.6 Sensitivity

The analysis used the technique of a “blind box” analysis, which means that the signal
region was blinded throughout all analysis steps presented so far. Before exploring the
“blinded” invariant di-muon signal mass region one can calculate an “expected upper
limit”, as introduced in Section 7.7, without knowing the number of signal B0

s → φ μ+μ−

events. For this, the upper limit μ(nobs, nback) in Eq. 9.1 is replaced by 〈μ(nback)〉. Using
the numbers presented in Section 9.5, without their statistical uncertainties, the result for
the statistical sensitivity is

〈B(B0
s → φ μ+μ−)〉

B(B0
s → J/ψ φ)

= 1.0 × 10−2 (9.2)

at a 95% CL.

Using the central value of the world average branching ratio [4] of B0
s → J/ψ φ =

9.3 × 10−4, a sensitivity for the rare decay of

〈B(B0
s → φ μ+μ−)〉 = 9.2 × 10−6

at a 95% CL was obtained.

9.7 Systematic Uncertainties

The different sources of relative uncertainties that enter the calculation on the limit of the
branching ratio are listed in Table 9.5. In principle, the branching ratio for B0

s → J/ψ φ
has the largest uncertainty, but its uncertainty cancels out due to the normalization.

The second largest uncertainty is 25% from the background interpolation into the
signal region and is due to the statistical uncertainty on the integral of the fit. The total
uncertainty on the number of observed B0

s → J/ψ φ events is 14.8%.

The efficiency ratio ε
B0

s

J/ψφ/ε
B0

s

φμ+μ− was determined in this analysis as a single number
from Monte Carlo and hence correlations are taken into account correctely. The statistical
uncertainty on the ratio is 7.4%.

An additional uncertainty of 1.1% is applied to take into account Monte Carlo weight-
ing. This weighting is due to the different pT distributions of the B mesons in data
and Monte Carlo. The same weighting procedure as used in the search for the decay
B0

s → μ+μ− and described in Section 8.4 was used.

Within the framework of the Standard Model, the B0
s mesons are expected to mix

in such a way that the mass and decay width differences between the heavy and light
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Table 9.5: The relative uncertainties for calculating an upper limit of B. Note that the
first uncertainty is not taken into account since the limit has been normalised to B(B0

s →
J/ψ φ).

Source Relative Uncertainty [%]
B(B0

s → J/ψ φ) 35.5
B(J/ψ → μ+μ−) 1.7
εJ/ψφ/εφμ+μ− 7.4
# of B0

s → J/ψ φ 14.8
Monte Carlo weighting 1.1
CP -odd/even lifetime differences 8.0
pre-Geant weighting 3.5
Total 18.8
background uncertainty 25.0

eigenstates, ΔM ≡ MH − ML and ΔΓ ≡ ΓH − ΓL are sizeable. The mixing phase
δφ is small and to a good approximation the two mass eigenstates correspond to the two
CP eigenstates. The light mass eigenstate is expected to be CP -even and has a larger
decay width, and thus a shorter lifetime, than the heavy mass eigenstate that is expected
to be CP -odd. The Monte Carlo samples for the normalization channel contained only
CP-even states. The efficiency difference between the CP -even and CP -odd state for the
normalization channel was estimated using Monte Carlo to be 6%, with an uncertainty
of 8% on the ratio. Therefore, another uncertainty of 8% was conservatively assigned to
take into account contributions from the CP -odd/even eigenstates.

An additional uncertainty was introduced to take into account pre-Geant weighting.
As described in Section 5.4, kinematical cuts for particles at generator level were applied
in order to save computing time. One has to check for possible biases introduced at the
pre-Geant (detector simulation) stage. To study those effects, Pythia samples for each
relevant decay channel were produced without any cuts on kinematic variables at the
event generator level. After that, each B meson candidate was weighted according to the
obtained weighting function and an efficiency was calculated. The efficiency ratio with
and without kinematic cuts for weighted events was estimated. A difference of 3.5% was
observed and taken as a systematic uncertainty.
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Figure 9.9: The invariant mass distribution for the full data sample with the standard
discriminating variables.

9.8 Results

After review and approval by the DØ collaboration, and after finalising the cuts, the signal
box was opened. No signal event was found for the cuts used in this analysis. The
invariant mass distribution is shown in Figure 9.9. The Poisson probability for observing
zero events for an expected background of 1.6± 0.4 is p = 0.22. Since fewer events than
expected were observed, the background prediction and the number of observed events
were checked with different combinations of looser cuts. Table 9.6 gives an overview of
some of the tested combinations and shows a reasonable agreement between the expected
background and the observed numbers of events.

Upper limits depend strongly on the algorithm that is used to derive the limit in case
that fewer events are observed than expected. Therefore, two limits, derived using the uni-
fied and the Bayesian approach, are quoted here. Including the statistical and systematic
uncertainties, the limit using the Frequentist approach is:

B(B0
s → φ μ+μ−)

B(B0
s → J/ψ φ)

< 4.4 (3.5) × 10−3 (9.3)

at a 95% (90%) CL. Using the central value of the world average for the branching ra-
tio [4] of B0

s → J/ψ φ = 9.3 ± 3.3 × 10−4, this corresponds to a limit of

B(B0
s → φ μ+μ−) < 4.1 (3.2) × 10−6 (9.4)

at a 95% (90%) CL.
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Table 9.6: Comparison of the expected background and observed events after various
cuts.

cut parameter cut values expected observed
no discriminating cuts 534 ± 14 517
Pointing angle (rad) < 0.11 37 ± 4 39
Pointing angle (rad) & < 0.11
Decay length significance > 4 7.8 ± 1.8 3
Pointing angle (rad) & < 0.11
Decay length significance > 2 18.6 ± 2 19
Pointing angle (rad) & < 0.11
Decay length significance > 11.1 3.4 ± 0.8 0
Pointing angle (rad) & < 0.11
Decay length significance & > 11.1
Isolation > 0.72 1.6 ± 0.4 0

Taking a Bayesian approach ([92]) with flat prior, and uncertainties treated as Gaus-
sians in the integration, an upper limit at a 95% (90%) CL of

B(B0
s → φ μ+μ−)

B(B0
s → J/ψ φ)

< 7.4 (5.6) × 10−3 (9.5)

was found.
A good statistical practice is also to quote the sensitivity of the search, if fewer events

are observed than expected. Here, the sensitivity was determined as the average expected
upper limit from an ensemble of hypothetical experiments including the statistical and
systematic uncertainties it was found to be

〈B(B0
s → φ μ+μ−)〉

B(B0
s → J/ψ φ)

= 1.1 × 10−2 (9.6)

at a 95% CL.



Chapter 10

Observation of the Decay B0
s → ψ(2S) φ

In this Chapter, the observation of the decay B0
s → ψ(2S) φ and a measurement of the

branching ratio B(B0
s → ψ(2S) φ) relative to B(B0

s → J/ψ φ) is reported. In addition,
the branching ratio of the decay B± → ψ(2S) K± relative to B± → J/ψ K± has been
measured and used as control channel.

10.1 Introduction

Studies of the decays of B mesons to ψ(2S) final states have contributed to knowledge
about hadronic B-meson decays and provide insight into the interplay between weak and
strong interactions. The decay B± → ψ(2S) K± was first observed [96] at ARGUS,
B0 → ψ(2S) K∗0 was frist observed [97] at CDF (Run I) , and CLEO frist observed [98]
B0 → ψ(2S) KS and B± → ψ(2S) K�±. Subsequently, all these decay modes have
been studied with more statistics by many experiments. The measurements show that the
rates of B± and B0 meson decays to the ψ(2S) final states are approximately 60% of the
rates of the corresponding decays to the J/ψ final state. For the B0

s meson, up to now
only the decay B0

s → ψ(2S) φ has been observed by the ALEPH collaboration, which
reported [99] one candidate event in 1993 in their B0

s mass measurement analysis. A
branching ratio for B0

s → ψ(2S) φ relative to B0
s → J/ψ φ has not yet been measured.

Main properties of the J/ψ and ψ(2S) are summarised in Tab. 10.1[4].

10.2 Event Selection

The B0
s → ψ(2S) φ candidate event signature contains two muons from the ψ(2S) and

two kaon candidate tracks which form a φ candidate. This signature is the same for the
normalisation channel B0

s → J/ψ φ.

103
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Table 10.1: Comparison of properties of J/ψ and ψ(2S) mesons (taken from [4]).

J/ψ ψ(2S)

Mass [ MeV/c2] 3096.916 ± 0.011 3686.093 ± 0.034
Full width Γ [ keV] 91.0 ± 3.2 281 ± 17
JPC 1−− 1−−

Decay to hadrons [%] 87.7 ± 0.5 97.85 ± 0.13
Decay to e+e− [%] 5.93 ± 0.10 0.755 ±0.031
Decay to μ+μ− [%] 5.88 ± 0.10 0.73 ± 0.08
Decay to τ+τ− [%] - 0.28 ± 0.07

10.2.1 Pre-selection

The pre-selection started with a loose selection of B± (B0
s ) candidates, consisting of two

identified muons and one (two oppositely) track(s) of charged particle(s) forming a good
vertex. In the selection step for the B0

s , the invariant mass mφ of the two kaon candidate
tracks should be between 0.980 GeV/c2 < mφ < 1.080 GeV/c2. The invariant mass of
the loose B candidate was required to be 4.4 GeV/c2 < mB < 6.2 GeV/c2. For the
B0

s → J/ψ φ and B0
s → ψ(2S) φ candidates, the invariant masses of the muon pair was

required to be within 250 MeV/c2 of the J/ψ and ψ(2S) masses [4], respectively.

The χ2/d.o.f. of the two-muon vertex was required to be smaller than 16. The trans-
verse momentum of each of the muons was required to be greater than 2.0 GeV/c and
their pseudorapidity had to be |η| < 2.0 to be well inside the fiducial volume of tracking
and muon detectors. The tracks that were matched to each muon leg had to have at least
one hit in the SMT and one hit in the CFT.

For events that passed these pre-selection cuts, the two-dimensional decay length Lxy

of the B candidate in the plane transverse to the beamline was calculated. The error on
this transverse decay length δLxy was required to be smaller than 150 μm. The transverse
momentum of the μ+μ− pair had to be greater than 4 GeV/c.

The selection of the decays B± → J/ψ K± and B0
s → J/ψ φ described here differs

slightly from the reconstruction described in the searches for the rare decays B0
s → μ+μ−

and B0
s → φ μ+μ− (Section 8.3 and 9.4). The selection criteria were modified in order to

adapt for the searched signals B± → ψ(2S) K± and B0
s → ψ(2S) φ and are described in

the following.
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10.3 Reconstruction of the Decays B± → J/ψ K± and
B± → ψ(2S) K±

To reconstruct the decays B± → (J/ψ, ψ(2S)) K± with (J/ψ, ψ(2S)) → μ+μ−, the two
muons were in addition required to have at least the medium quality criteria fulfilled. The
formed candidates were then constrained to the invariant mass of the J/ψ or ψ(2S) [4],
respectively. The combined vertex fit of the J/ψ and the additional K± should not yield
a χ2 of more than 20 for 3 d.o.f. The pT of the K± had to be larger than 0.9 GeV/c.
Moreover, a collinearity between the decay length vector of the B± and the combined
momentum of J/ψ and K± of at least 0.9 in the transverse plane was required. To remove
prompt background, the decay length significance Lxy/δLxy of the B± candidate had to
be larger than four. The results of a fit to the obtained invariant mass spectrum, using a
Gaussian and a second order polynomial, are summarised in Table 10.2 for Monte Carlo
and in Table 10.3 for the full data sample. The signal event yields for the B± → J/ψ K±

decay were obtained by leaving all fit parameters floating. For the B± → ψ(2S) K±

decay however, the values for the mean and the width of the Gaussian were fixed. The
mean was set to the fit result obtained for the B± → J/ψ K± data events. The width was
obtained by scaling the width obtained for the Monte Carlo sample with a scale factor
obtained from the data/MC difference1 for B± → ψ(2S) K± events. The mean for both
channels (B± → J/ψ K±, B± → ψ(2S) K±) are lower than expected but the widths are
consistent with expectations from Monte Carlo. The change in the yield that is expected
for the case that all values are floating and not fixed to the Monte Carlo expectation was
taken as a systematic uncertainty, as discussed in Section 10.7.2. In Figure 10.1, the
resulting invariant mass distribution for the B± → J/ψ K± is shown and in Figure 10.2
the corresponding distribution is shown for B± → ψ(2S) K±.

Table 10.2: Summary of fitting results of B± → (J/ψ, ψ(2S)) K± final states for Monte
Carlo events.

Decay Mean [ MeV/c2] Width [ MeV/c2] εMC

B± → J/ψK+ 5278.8 ± 0.8 37.6 ± 0.8 (1.14±0.02)×10−3

B± → ψ(2S)K+ 5278.3 ± 1.0 29.0 ± 0.6 (1.07±0.04)×10−3

1σDataB±→ψ(2S)K± =
σData

B±→J/ψ K±
σMC

B±→ψ(2S) K±
· σMC

B±→ψ(2S)K±
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Table 10.3: Summary of fitting results of B± → (J/ψ, ψ(2S)) K± final states for the
data.

Decay Mean [ MeV/c2] Width [ MeV/c2] Yield
B± → J/ψ K± 5273.7 ± 1.2 40.1 ± 1.2 1970±62
B± → ψ(2S) K± 5273.7 (fixed) 30.9 (fixed) 157 ±18
B± → ψ(2S) K± 5269.9 ± 3.2 27.1 ± 2.9 149±18
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Figure 10.1: Invariant mass distribution for the B± → J/ψ K± decay for the data sample.

10.4 Reconstruction of the Decays B0
s → J/ψ φ and

B0
s → ψ(2S) φ

To reconstruct the decays B0
s → (J/ψ, ψ(2S)) φ with (J/ψ, ψ(2S)) → μ+μ−), the two

muons were in addition required to have at least a hit in the first layer of the muon sys-
tem and to be matched to a central track. They were constrained to the invariant mass
of the J/ψ or ψ(2S) [4]. The muon pair was then combined with another pair of tracks
of oppositely charged particles (φ candidate), each with pT > 0.9 GeV/c, to a B0

s candi-
date vertex with a χ2 < 36 for five d.o.f. Each of the Kaon candidates needed at least
one hit in the SMT and the φ candidate was required to have an invariant mass between
1.008 GeV/c2 and 1.032 GeV/c2. To remove prompt background, the decay length sig-
nificance Lxy/δLxy of the B0

s candidate had to be larger than four. The results of a fit to
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Figure 10.2: Invariant mass distribution for the B± → ψ(2S) K± decay for the data
sample.

the invariant mass spectrum, using a Gaussian and a second order polynomial, are sum-
marised in Table 10.4 for Monte Carlo and in Table 10.5 for the full data sample. The
yields for the decay B0

s → J/ψ φ were obtained by leaving all parameters floating. Simi-
lar as in the case of B± → ψ(2S) K±, the values for the mean and width of the Gaussian
were fixed for the B0

s → ψ(2S) φ decay. The mean was set to the value obtained for
B0

s → J/ψ φ and the width was obtained by scaling the width from Monte Carlo with a
factor obtained from the data/MC difference2 for the B0

s → J/ψ φ decay.

In Figure 10.3, the resulting invariant mass distribution for the B0
s → J/ψ φ is shown

and in Figure 10.4 the corresponding distribution is shown for B0
s → ψ(2S) φ.

To further enhance the signal to background ratio, discriminating variables described
in Section 6.1 and the optimisation procedure described in Section 6.2 were used.

10.5 Optimisation Procedure

Before the optimisation of the discriminating variables, the mass region of interest was
restricted to 4.8 GeV/c2 < Mφμ+μ− < 6.0 GeV/c2, containing the signal region around
the world average value of the B0

s mass. Table 10.6 defines the mass regions that were
used for the sidebands and the signal region.

2σDataB0
s→ψ(2S)φ =

σData
B0

s→J/ψ φ

σMC
B0

s→J/ψ φ

·σMC
B0

s→ψ(2S)φ and using the CP -even Monte Carlo events for B0
s → J/ψ φ.
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Table 10.4: Summary of fitting results of B0
s → (J/ψ, ψ(2S)) φ final states for Monte

Carlo events.

Decay Mean [ MeV/c2] Width [ MeV/c2] εMC

B0
s → J/ψ φ (CP -even) 5369.6 ± 1.3 26.6 ± 1.2 (1.94±0.08)×10−4

B0
s → J/ψ φ (CP -odd) 5370.2 ± 1.3 28.0 ± 1.2 (2.05±0.09)×10−4

B0
s → ψ(2S) φ (CP -even) 5370.1 ± 0.8 22.5 ± 0.7 (2.08±0.07)×10−4

Table 10.5: Summary of fitting results of B0
s → (J/ψ, ψ(2S)) φ final states for the data.

Decay Mean [ MeV/c2] Width [ MeV/c2] Yield
B0

s → J/ψ φ 5356.7 ± 2.7 28.9 ± 2.3 200±18
B0

s → ψ(2S) φ 5356.7 (fixed) 24.4 (fixed) 13±8

The signal region corresponds to a window of ±150 MeV/c2 around the B0
s mass.

The expected mass resolution for B0
s → ψ(2S) φ from Monte Carlo simulation is

≈ 25 MeV/c2, the chosen mass window therefore covers a ±6σ window. During opti-
misation the signal region was hidden.

Table 10.6: The different four track invariant mass regions for signal and sidebands used
for background estimation.

Region min Mass ( GeV/c2) max Mass ( GeV/c2)
region of interest 4.80 6.00
hidden signal region during optimisation 5.22 5.52
sideband I 4.80 5.22
sideband II 5.52 6.00

Two different methods were used for the optimisation of the three discriminating vari-
ables. The first of those methods is the standard cut-based Random Grid Search and the
second method employs a linear combination of the three variables to a so-called “linear
classifier”. The results of these two methods are described in the following.
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Figure 10.3: Invariant mass distribution for the B0
s → J/ψ φ decay after the pre-selection

for the data sample using a loose decay length significance cut of greater than four.

10.5.1 Random Grid Search

A Random Grid Search, as described in Section. 6.2, was used in order to find the optimal
set of cuts. As optimisation criterion, the variable P defined as:

P =
εψ(2S) φ

a
2

+
√

NBack

(10.1)

was used. Instead of the definition given in Section 6.2, the constant a was set to a value
of five here. The constant a is the number of standard deviations that corresponds to the
confidence level at which the signal hypothesis is tested. Therefore, the value of five cor-
responds to a maximised sensitivity to observe a 5σ signal. The reconstruction efficiency
from signal Monte Carlo after pre-selection is given by εψ(2S) φ, and NBack is the expected
number of background events interpolated from the sidebands as defined in Table 10.6.
The resulting cut values that were obtained from maximising P are listed in Table 10.7
as well as a comparison of the signal efficiency with the Monte Carlo efficiency. As ex-
pected, they are very similar to the B0

s → φ μ+μ− analysis due to the same final states
and almost identical background. Table 10.7 and Table 10.8 compare the efficiencies for
Monte Carlo and signal yield for the discriminating cuts. The values show a reasonably
good agreement between data and Monte Carlo simulation.

The total signal efficiency for the decay B0
s → ψ(2S) φ for the three discriminating

variables relative to pre-selection was found to be (60 ± 5)%. After a linear interpolation
of the sideband population into the final signal region, an expected number of background
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Figure 10.4: Invariant mass distribution for the B0
s → ψ(2S) φ decay for the data sample

using a loose decay length significance cut of greater than four.

Table 10.7: Comparison of the signal efficiency with the Monte Carlo efficiency for B0
s →

ψ(2S) φ events.

cut parameter cut value MC eff. (%) Data eff. (%)
Pointing angle (rad) < 0.11 88.6 ± 4.5 77±33
Decay length significance > 11.1 74.9 ± 4.3 90±41
Isolation > 0.74 90.9 ± 5.6 89±29

events of 0.8±0.4 was obtained for the whole data sample. Figure 10.5 shows the resulting
invariant mass distribution after all cuts. In the signal region, 11 events were found. The
Poisson probability that the expected background fluctuates to give the observed 11 events
or more is given by p = 1.04 × 10−9. The significance S of this enhancement, quoted in
number of standard deviations, is 5.99σ. The significance S is defined as

1 − p =

S∫
−∞

N(0, 1) dx (10.2)

with N(0, 1) denoting a standardised Gaussian probability function with expectation
value and variance equal to 0 and 1, respectively.

A fit to the obtained mass spectrum assuming a Gaussian signal over a linear back-
ground, yielded 8.6±3.3 signal events with 1.8±1.3 background events. The probability
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Table 10.8: Comparison of the signal efficiency with the Monte Carlo simulation effi-
ciency for B0

s → J/ψ φ events.

cut parameter cut value MC eff. (%) Data eff. (%)
Pointing angle (rad) < 0.11 89.5±5.8 83.0±8.8
Decay length significance > 11.1 80.8±5.7 75.9±8.9
Isolation > 0.74 90.2±6.8 87.3±11.4
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Figure 10.5: Invariant mass distribution for the B0
s → ψ(2S) φ decay for the data sample

and the optimised discriminating cuts with the RGS.

for a background fluctuation is p = 1.1 × 10−4. The significance S of the fitted sig-
nal peak can also be evaluated as S =

√−2 ln (L0/Lmax) = 3.89, with Lmax being the
Maximum-Likelihood of the best fit including both signal and background and L0 being
the best fit if the signal yield is set to zero. For the log-likelihood fit the mean and width
of the Gaussian were fixed as described in Section 10.4.

10.5.2 A Multivariate Linear Classifier

A logistic regression model as described in Section 6.4 was employed in a multivariate
approach. As multivariate input, the three variables isolation, decay length significance
and pointing angle were used. Figure 10.6 shows the distribution of the resulting discrim-
inating variable ξ for signal Monte Carlo events and data. The optimal cut value on ξ
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Figure 10.6: Output of the logistic regression for signal Monte Carlo and sideband data.

was again found using the variable P as maximisation criterion and is indicated in Fig-
ure 10.6. The optimised linear classifier model yielded a background in data of 0.6 ± 0.2
events after interpolation, while 10 candidate events were observed. A Gaussian fit as
shown in Figure 10.7 yielded 9.2±3.3 signal events and 0.8±0.8 background events. The
signal efficiencies and background rejection values are comparable to the ones obtained
with the RGS. For reasons of transparency, however, it was decided not to use the linear
classifier, but the RGS approach.

10.6 Relative Branching Ratio Measurements

10.6.1 Measurement of B(B0
s → ψ(2S) φ)/B(B0

s → J/ψ φ)

Since a significant excess of signal events was observed, a relative branching ratio was
determined using the decay B0

s → ψ(2S) φ. The ratio of the branching fractions is3:

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

=
NB0

s→ψ(2S) φ

NB0
s→J/ψ φ

· εJ/ψ φ

εψ(2S) φ
· B(J/ψ → μ+μ−)
B(ψ(2S) → μ+μ−)

(10.3)

where

• εψ(2S) φ and εJ/ψ φ are the efficiencies of the signal and normalisation channels, ob-
tained from Monte Carlo simulations, and

3The same formula is valid to calculate the ratio for the B± decay, with φ interchanged with K±
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Figure 10.7: The invariant mass distribution for the full data sample using a linear dis-
criminant.

• B(J/ψ → μ+μ−) = (5.88 ± 0.1)% and B(ψ(2S) → μ+μ−) = (7.3 ± 0.8) ×
10−3 [4] are the measured branching fractions.

The efficiencies εψ(2S) φ and εJ/ψ φ are the global signal efficiencies for the signal and
normalisation channel, respectively, including the pre-selection cuts and the acceptance.
In Table 10.9, the various Monte Carlo efficiencies are given that were needed to calculate
the ratio of the branching ratios. The quoted values refer to triggered Monte Carlo events
in the trigger simulator and the uncertainties are due to statistics only.

Table 10.9: Efficiencies for the two decay channels (both channels CP -even only) after
trigger and reconstruction with respect to the generated bb̄-pairs.

εψ(2S) φ εJ/ψ φ εJ/ψ φ/εψ(2S) φ

RGS (CP -even) (12.5 ± 0.6) × 10−5 (11.5 ± 0.7) × 10−5 (91.7 ± 7.2)%

The invariant mass plot for B0
s → J/ψ φ events, after applying the same cuts on the

discriminating variables as quoted in Table 10.8 for the B0
s → ψ(2S) φ events, is shown

in Figure 10.8. The observed number of B0
s → J/ψ φ signal events obtained from a

gaussian fit is 110 ± 11 events, including statistical uncertainty only.
This gives for the RGS-optimization

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

= 0.58 ± 0.24. (stat)
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Figure 10.8: Invariant mass distribution for the B0
s → J/ψ φ decay for the data sample

and the optimized discriminating cuts with the RGS.

Using the signal event yields quoted in Table 10.5 (not optimised discriminating cuts) one
obtains:

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

= 0.48 ± 0.30 (stat)

10.6.2 Measurement of B(B± → ψ(2S) K±)/B(B± → J/ψ K±)

The ratio of the branching ratios was calculated using Eq. 10.3 replacing the φ by the K±.
The signal event yields were taken from Table 10.3 and the efficencies were taken from
Table 10.2. Putting all these numbers together one obtains:

B(B± → ψ(2S) K±)

B(B± → J/ψ K±)
= 0.60 ± 0.07 (stat)

10.7 Systematic Uncertainties

Different types of systematics are involved in the determination of the relative branching
ratio:

• Systematics due to the branching ratio B(J/ψ → μ+μ−) /B(ψ(2S) → μ+μ−) =
8.05 ± 0.89. This uncertainty was calculated from the world average values [4]
assuming no correlations among the two single decays.
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• Systematics due to the determination of the signal yield.

• Systematics due to the determination of the efficiencies εψ(2S) φ and εJ/ψ φ. One ex-
pects that most effects cancel out in the ratio. This is due to the fact that both decay
modes have very similar topologies. However, for the B0

s decays the polarization
could be different. The signal Monte Carlo was generated as a pure CP -even state,
while for the normalization channel a pure CP -odd state was generated.

10.7.1 Measurement of B(B0
s → ψ(2S) φ)/B(B0

s → J/ψ φ)

All relative uncertainties that enter the calculation of the relative branching ratio are listed
in Table 10.10. The dominating uncertainty arises from the determination of the branching
fraction B(ψ(2S) → μ+μ−). The relative statistical uncertainties on εψ(2S) φ and εJ/ψ φ

Table 10.10: The relative uncertainties for the measurement of the relative branching ratio
B(B0

s → ψ(2S) φ/B(B0
s → J/ψ φ)

Source Relative Uncertainty [%]
B(J/ψ → μ+μ−) 1.7
B(ψ(2S) → μ+μ−) 11.0
Total (B) 11.1
εJ/ψ φ/εψ(2s) φ 7.2
CP -odd/even (J/ψφ) 7.2
Total (sys) 10.2

are 4.5% and 5.6%, respectively. They were combined into a single efficiency uncertainty
assuming no correlations. The uncertainty related due to the polarization of the normal-
ization channel B0

s → J/ψ φ was determined from Monte Carlo. Two event samples,
one for each polarization state (even and odd), were generated and the efficiencies were
calculated. The difference of 7.2% was taken as systematic uncertainty.

The ratio of the relative branching ratios is then

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

= 0.58 ± 0.24 (stat) ± 0.06 (sys) ± 0.07 (B).

Confidence Interval for NB0
s→ψ(2S) φ

Using the number of observed events, the expected number of background events, and
their uncertainties, a confidence interval can be constructed. The method proposed by
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Conrad et al. [91] was used, which employs the Feldman & Cousins (FC) ordering scheme
and allows the inclusion of systematic uncertainties (listed in Table 10.10) into the cal-
culation of the confidence belt by integrating over these uncertainties. For 11 observed
signal events and 0.8 expected background events, a confidence intervall of [4.3, 18.8]
was obtained at 95% CL. Using the result of the Gaussian fit with 9 signal events and 1.7
expected background events, the obtained confidence intervall is [2.1, 15.3].

10.7.2 Measurement of B(B± → J/ψ K±)/B(B± → ψ(2S) K±)

The relative uncertainties for the calculation of the relative branching ratio B(B± →
ψ(2S) K±)/B(B± → J/ψ K±) are listed in Table 10.11. The relative statistical uncer-
tainties on εψ(2S) K± and εJ/ψ K± are 3.7% and 1.9%, respectively, and were combined
assuming no correlations. As mentioned in Section 10.3, the fitted mean and width of the
signal Gaussian for the B(B± → ψ(2S) K±) candidates are smaller than expected, when
all fit parameters are floating. A systematic uncertainty due to this effect was assigned.
The difference in the obtained signal event yield for fixed and floating fit parameters is
5%, as shown in Table 10.3.

Table 10.11: The relative uncertainties for the measurement of the relative branching ratio
B(B± → ψ(2S) K±)/B(B± → J/ψ K±)

Source Relative Uncertainty [%]
B(J/ψ → μ+μ−) 1.7
B(ψ(2S) → μ+μ−) 11.0
Total (B) 11.1
εJ/ψ K±/εψ(2S) K± 4.1
Signal yield 5
Total (sys) 4.1

Including all uncertainties the ratio of the branching ratios is then:

B(B± → ψ(2S) K±)

B(B± → J/ψ K±)
= 0.60 ± 0.07 (stat) ± 0.04 (sys) ± 0.06 (B).

10.8 Conclusions

The observation of the decay channel B0
s → ψ(2S) φ with a significance of 5.99σ based

on counting statistics has been presented. For the first time, also the ratio of the branching
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ratios

R(B0
s → ψ(2S) φ) =

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

= 0.58 ± 0.24 (stat) ± 0.06 (sys) ± 0.07 (B)

has been measured. In addition, a measurement of the relative branching ratio

R(B± → ψ(2S) K±) =
B(B± → ψ(2S) K±)

B(B± → J/ψ K±)
= 0.60±0.07 (stat)±0.04 (sys)±0.06 (B)

has been presented. A comparison between the values obtained in this analysis and
published values is given in Table 10.12, where the additional short notations

R(B0
d → ψ(2S) K0) =

B(B0
d → ψ(2S) K0)

B(B0
d → J/ψK0)

and
R(B0

d → ψ(2S)K∗) =
B(B0

d → ψ(2S)K∗)
B(B0

d → J/ψK∗)

are used. The result obtained for R(B± → J/ψ K±) shows a good agreement with
previous measurements and is of comparable statistical uncertainty.

Table 10.12: The measured relative branching ratios from this analysis and published
results. The first uncertainty for the published values is due to statistics and the second
due to systematics.

Decay This analysis Published result

R(B0
d → ψ(2S) K0) - 0.82 ± 0.13 ± 0.12 (PDG 04,[4])

R(B0
d → ψ(2S) K∗) - 0.61 ± 0.19 ± 0.06 (PDG 04,[4])

R(B± → ψ(2S) K±) 0.60 ± 0.07 ± 0.04 ± 0.06 0.64 ± 0.06 ± 0.06 (BaBar 02,[100])

R(B0
s → ψ(2S) φ) 0.58 ± 0.24 ± 0.06 ± 0.07
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Outlook and Summary

The Tevatron is expected to deliver luminosity to the experiments until the end of the
year 2009. This should yield a total integrated luminosity of 4 fb−1 to 8 fb−1, depending
on the performance of the Tevatron accelerator and foreseen upgrades of the accelerator.
Presently, different scenarios about a possible extension of the Tevatron running period
are discussed.

11.1 Outlook for B0
s → μ+μ−

In Figure 11.1, the expected average upper limit for the decay B0
s → μ+μ− is shown as

a function of integrated luminosity for the DØ experiment. The horizontal band indicates
the Standard Model prediction with its uncertainty. To ensure a reasonably low expected
background even at high integrated luminosities, the expected limits for 1 fb−1 and 2 fb−1

have been re-optimised by re-sampling the background of the available data at 300 pb−1.
The other points have been scaled according to the luminosity. The shown band indicates
a ±10% variation of the number of normalisation events. The plot makes it clear that
even with twice the statistics expected at the end of 2009, the Standard Model prediction
for B0

s → μ+μ− can not be reached. However, improved limits on this decay mode will
further reduce possible models beyond the Standard Model.

One way to improve the sensitivity is by combining results with the other Tevatron
experiment, CDF. This was done for this analysis and combined limits for both decay
modes, B0

s → μ+μ− and B0
d → μ+μ− [37], have been set. A Bayesian integration

method was used to calculate the combined limits [92]. The method takes into account
correlated and uncorrelated systematic uncertainties between the two experiments. The
combined results exclude branching ratios of B0

s → μ+μ− > 1.5 × 10−7 and B0
d →

μ+μ− > 4.0 × 10−8 at a 95% CL. These are presently the most stringent limits on these
decays. A similar combination was done for the expected average limits of CDF and DØ.

118
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Figure 11.1: Expected average upper limit at a 95% CL for the decay B0
s → μ+μ− as a

function of integrated luminosity.

In Figure 11.2, the combined expected average upper limit from the Tevatron experiments
is shown as a function of the integrated luminosity collected by each experiment. The two
additional lines represent the 3σ and 5σ discovery potential if a signal is present.

11.2 Outlook for B0
s → φ μ+μ−

Figure 11.3 shows the expected average upper limit as a function of integrated luminos-
ity for the decay B0

s → φ μ+μ−. The predicted Standard Model branching fraction is
indicated as a horizontal band [94] with a 20% uncertainty. The extrapolation was ob-
tained by scaling the number of background and normalisation events according to the
total integrated luminosity. A re-optimisation for each point was not performed since the
expected number of background events is still reasonably small even at higher integrated
luminosities. The limit band indicates a ±10% variation of the number of normalisation
events. The Standard Model branching fraction should be observable with an integrated
luminosity of 4 fb−1.

11.3 Summary

This thesis presented searches for rare B0
s decays with the DØ detector at

√
s = 1.96 TeV,

using a data sample of 300 pb−1 integrated luminosity collected between 2002 and 2004.
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Figure 11.2: Expected average upper limit from the Tevatron for the decay B0
s → μ+μ−

as a function of integrated luminosity.

The rare decays B0
s → μ+μ− and B0

s → φ μ+μ− are flavour-changing neutral current
decays and are forbidden in the Standard Model at tree level. However, they proceed
at a very low rate through higher order processes. Within the Standard Model the low
predicted rates place the observation of these modes outside the reach of this study, but
several extensions to the Standard Model predict a substantial enhancement of the branch-
ing fractions.

In the search for the decay B0
s,d → μ+μ−, four candidate events were observed while

4.3±1.2 events were expected as background. In the absence of a signal, a limit on the
branching fraction B(B0

s → μ+μ−) was set. The resulting limit on the branching fraction
limit at a 95% (90%) CL, including all the statistical and systematic uncertainties, is given
by

B(B0
s → μ+μ−) ≤ 3.7 × 10−7 (3.0 × 10−7).

The result was combined with the CDF experiment to obtain the currently most stringent
limits on the decay modes B0

s → μ+μ− and B0
d → μ+μ− [37]. The obtained limits

can be used to constrain models of new physics beyond the Standard Model. The decay
B0

s → μ+μ− gives information not only on SUSY breaking mediation mechanisms but
also places a severe limit on the neutralino dark matter scattering cross section within a
large class of supergravity models in the large tan β region.
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Figure 11.3: Expected average upper limit at a 95% CL for the decay B0
s → φ μ+μ− as a

function of integrated luminosity.

In the search for the decay B0
s → φ μ+μ−, no candidate event was observed in the

signal region, while the background interpolation from the sidebands predicted 1.6±0.4
events. Finding no evidence for a signal, an upper limit on the branching fraction was set.
Including statistical and systematic uncertainties, and using the central value of the world
average branching ratio for B0

s → J/ψ φ, a limit of

B(B0
s → φ μ+μ−) < 4.1 (3.2) × 10−6 (11.1)

at a 95% (90%) CL was found following a Frequentist approach. This improves the
currently best published limit from CDF [30] by one order of magnitude.

In addition to these searches for rare decays, also the decay mode B0
s → ψ(2S) φ

was studied. An observation with a significance of 5.99σ based on counting statistics was
obtained. For the first time, the relative branching ratio

B(B0
s → ψ(2S) φ)

B(B0
s → J/ψ φ)

= 0.58 ± 0.24 (stat) ± 0.09 (sys)

was measured. In addition, a measurement of the relative branching

B(B± → ψ(2S) K±)

B(B± → J/ψ K±)
= 0.60 ± 0.07 (stat) ± 0.07 (sys)

has been presented. The obtained value for the B± meson decay agrees well with previous
measurements. The relative fraction of B0

s → ψ(2S) φ decays to B0
s → J/ψ φ decays is

consistent with the corresponding fraction for decays of the B± meson measured by B
factories.



Appendix A

Deriving the Master Formula

When observing the decay of a B meson to a specific final state f , the expected number
of observed events is given by

Nobs(f) =

∫
L dt · σ(B) · B(B → f) · ε (A.1)

where
∫ L dt is the total integrated luminosity of the collected data sample, σ(B) the B

meson production cross section, B(B → f) the branching fraction of the specific decay
and ε the corresponding efficiency and acceptance. The inclusive bb̄ quark cross section
has been measured, the cross section σbb̄ for a specific B meson however, depends on the
fragmentation into that B meson type. In the search for the rare decay B0

s → μ+μ−, the
following cross sections are involved

σB± = σbb̄ · b̄ → B±

σBd
= σbb̄ · b̄ → B0

d (A.2)
σBs = σbb̄ · b̄ → B0

s

where σbb̄ is the total bb̄ production cross section, and b̄ → B±, b̄ → B0
d and b̄ → B0

s

are the fragmentation fractions of a b or b̄ quark producing a B0
s , a B± or a B0

d meson,
respectively. Using Eq. A.1, the numbers of observed events are given by

NB0
s→μ+μ− =

∫
L dt · σB0

s
· B(B0

s → μ+μ−) · εB0
s

μ+μ−

NB0
d→μ+μ− =

∫
L dt · σB0

d
· B(B0

d → μ+μ−) · εB0
d

μ+μ− (A.3)

NB±→J/ψ K± =

∫
L dt · σB± · B(B± → J/ψ K±) · B(J/ψ → μ+μ−) · εB±

μ+μ−K .

By performing a measurement relative to a decay with a similar final state, common
reconstruction efficiencies as well as the total luminosity will cancel, if the same dataset
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is used. The number of observed events in our B0
s → μ+μ− signal region, N , is the sum

of NB0
s→μ+μ− and NB0

d→μ+μ− since the mass resolution is not good enough to separate the
two decay modes. When calculating the ratio with respect to the normalisation channel
B± → J/ψ K±, this yields

N

NB±→J/ψ K±
=

σB0
s
· B(B0

s → μ+μ−) · εB0
s

μ+μ− + σB0
d
· B(B0

d → μ+μ−) · εB0
d

μ+μ−

σB± · B(B± → J/ψ K±) · B(J/ψ → μ+μ−) · εB±
μ+μ−K±

. (A.4)

Defining R as the ratio of the branching ratios R = B(B0
d → μ+μ−)/B(B0

s → μ+μ−)
one can write this as

N

NB±→J/ψ K±
=

σB0
s

σB±
· ε

B0
s

μ+μ−

εB±
μ+μ−K±

· B(B0
s → μ+μ−)

B(B± → J/ψ K±) · B(J/ψ → μ+μ−)
+ (A.5)

σB0
d

σB±
· ε

B0
d

μ+μ−

εB±
μ+μ−K±

· B(B0
s → μ+μ−) · R

B(B± → J/ψ K±) · B(J/ψ → μ+μ−)

and extracting common factors it can be written as

N

NB±→J/ψ K±
=

B(B0
s → μ+μ−)

B(B± → J/ψ K±) · B(J/ψ → μ+μ−)
× (A.6)

1

εB±
μ+μ−K±

·
(

ε
B0

s

μ+μ− · σB0
s

σB±
+ ε

B0
d

μ+μ− · σB0
d

σB±
· R

)
.

This yields, with the usage of the fragmentation defined in Equation A.2, the relation

B(B0
s → μ+μ−) =

N

NB±→J/ψ K±
× (A.7)

B(B± → J/ψ K±) · B(J/ψ → μ+μ−) · εB±
μ+μ−K±

ε
B0

s

μ+μ−
· 1

b̄→B0
s

b̄→B± + R · b̄→B0
d

b̄→B± · ε
B0

d
μ+μ−

ε
B0

s
μ+μ−

from which the formula

B(B0
s → μ+μ−) ·

⎛
⎝1 + R · ε

B0
d

μ+μ−

ε
B0

s

μ+μ−
· b̄ → B0

d

b̄ → B0
s

⎞
⎠ = (A.8)

μ(nobs, nback)

NB±→J/ψ K±
· εB±

μ+μ−K±

ε
B0

s

μ+μ−
· b̄ → B±

b̄ → B0
s

· B(B± → J/ψ K±) · B(J/ψ → μ+μ−)

is obtained, where, for calculating an upper limit, the number of observed events N was
replaced by the event upper limit μ(nobs, nback).



Appendix B

Signal Monte Carlo Data Matching for
B0

s → J/ψ φ Events

A sample obtained using less restrictive cuts for the normalisation channel B0
s → J/ψ φ

was employed to perform a comparison between data and Monte Carlo simulation. The
main differences with respect to the sampel used in the analysis are that no trigger was
required, the cut on bad runs was omitted and no cuts on the muon quality and the muon
transverse momentum were applied. This yielded a signal of 340 candidate events. The
distributions in the signal region were corrected for the background interpolated from the
sidebands. Monte Carlo and data distributions for the kinematic variables are shown in
Figure B.1 to B.3, and distributions for the discriminating variables are shown in Fig-
ure B.4 for the B0

s → J/ψ φ candidate events. The Monte Carlo events were weighted
according to the pT of the B. The weighting procedure was applied as described in Sec-
tion 8.4.
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Figure B.1: Data and Monte Carlo events comparison for the leading Muon (left) and
trailing Muon (right) for B0

s → J/ψ φ candidates.
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Figure B.2: Data and Monte Carlo events comparison for the leading Kaon (left) and
trailing Kaon (right) for B0

s → J/ψ φ candidates.
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Figure B.3: Data and Monte Carlo events comparison for the J/ψ candidate (left) and φ
candidate (right) for B0

s → J/ψ φ candidate events.
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and background subtracted data events.



Appendix C

Depletion Voltage Studies

The DØ Silicon Microstrip Tracker (SMT) was designed for use in Run IIa with an ex-
pected integrated luminosity of 2 fb−1. It was predicted that the SMT could withstand
about 4 fb−1 before succumbing due to effects of radiation damage. Special runs to study
the depletion voltage have been taken for three different accumulated luminosities. A
method has been set up to fit the charge collection curve and extract the depletion voltage
of the sensors. It is expected that at the currently accumulated integrated luminosity the
effect of radiation damage should be visible, although type inversion has not yet taken
place.

The model of charge collection in irradiated sensors proposed in [101] was used to
determine the depletion voltage from measured charge collection curves. In the following
Sections, the model and the obtained results are described.

C.1 Radiation Damage

An estimate of the SMT lifetime based on calculations and measurements of radiation
damage can be found in [102]. The expectation is that the lifetime of the SMT will be
limited by micro-discharge breakdown of the junction in the double-sided silicon detec-
tors in the inner four barrels. Micro-discharges will begin to occur at bias voltages of ≈
150 V and all channels will fail at ≈ 200 V. In addition, for double-sided detectors, break-
down of the coupling capacitors will start soon after bias voltages exceed 100 V per side.
Figure C.1 shows the voltage required to deplete the sensors as a function of the fluence of
1 MeV eq. n/cm2 [103]. The line corresponds to the so-called Hamburg model [104] for
the innermost layer. The vertical lines indicate the accumulated luminosities where bias
voltage scans were performed. From this figure and the above limits for the bias voltage
one finds an operation limit of ≈ 1.5x1013 1 MeV eq. n/cm2 (corresponding to ≈ 4 fb−1

or 2 MRad). Errors in estimating the micro-discharge formation and dose accumulation
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Figure C.1: Depletion voltage from the Hamburg Model predictions and from laser mea-
surements for various detectors.

lead to an uncertainty of about 50% on this result. Different varieties and locations of
detectors are listed in Table C.1.

C.2 Method for Measuring the Depletion Voltage

The depletion voltage for one superlayer at a time was determined using recorded data
for tracks from pp collisions. Data were taken for three different integrated luminosities
(0.25 fb−1, 0.5 fb−1 and 1 fb−1) for all layers. The bias voltage for one layer was scanned
from 10% to 100% in steps of 10% while the rest of the detectors were kept at 100% of
the current operating bias voltage. Clusters associated to tracks that were identified by
the CFT and the other ladders were used to measure the cluster charge as a function of
the applied bias voltage. As long as the detectors are underdepleted, the charge collection
increases linear and saturates around the full depletion voltage. For these measurements
the SMT was fully read out (no sparsification was performed in the SVXII chips).
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Table C.1: SMT detector geometries and types: DS-double sided, SS-single sided, DSDM
double sided double metal. The central barrels are Barrel 2 to 5, the outer barrels are 1
and 6.

Module Type Layer Inner radius Outer radius Manufacturer
Central barrels DSDM 1 2.715 3.645 Micron
Central barrels DS 2 4.55 5.554 Micron
Central barrels DSDM 3 6.768 7.582 Micron
Central barrels DS 4 9.101 10.51 Micron
Outer barrels SS 1 2.715 3.645 Micron
Outer barrels DS 2 4.55 5.554 Micron
Outer barrels DS 3 6.768 7.582 Micron
Outer barrels SS 4 9.101 10.51 Micron

C.3 The Model

After hadron irradiation, radiation-induced defects produced in the crystal lattice act as
trapping centres. A fraction of the charge generated in the active volume may be trapped
for longer than the integration time of the readout amplifier. Consequently, charge trap-
ping can cause a signal deficit. In the model used here, it is assumed that trapping depends
on the carrier velocity since slowly moving carriers will spend longer time in the vicinity
of the trapping centres. This means that above full depletion the signal size in irradiated
detectors continues to grow until the saturation velocity of the charge carriers is reached.
Beyond this point, trapping remains constant and the signal reaches a plateau.

As a consequence of trapping, only a fraction of the carriers produced at a point x0 will
reach another point located at x1. That fraction will be proportional to exp[−(x1−x0)/λ],
with λ being the signal attenuation length. A linear relationship between λ and v, the
carrier velocity, is assumed:

λ(v) = λ0 + λ1 · v

vs

. (C.1)

Where, vs is the saturation velocity. The collected signal for an applied bias voltage V is
then:

q(V ) =
Q0

ω0

∫ ω(V )

0

exp
(
−

∫ ω0

x

dx′

λ(x′)

)
dx, (C.2)

where Q0 is the total charge deposited inside the detector volume and ω0 is the thickness
of the detector. The outer integral is performed over the position of the charge generation
inside the detector’s depleted bulk (x) whilst the inner integral is performed from that
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point to the readout plane of the sensor. The different parameters in Equation C.2 are:

ω(V ) =

{
ω0 ·

√
V/Vdep if V < Vdep

ω0 if V ≥ Vdep
(C.3)

λ(x) = λ0 + λ1 · v(x)

vs

(C.4)

v(x) = μ(x) · ε(x) (C.5)

μ(x) =
μ0

1 + μ0 · ε(x)/vs

(C.6)

ε(x) =
2 · Vdep

ω2
0

· (ω(V ) − x
)

(C.7)

where ε(x) is the electric field in the silicon detector. The five free parameters of the
model are the total the charge (Q0), the depletion voltage (Vdep), the saturation velocity
(vs), and λ0 and λ1 which describe the effect of charge trapping. Since vs is expected to be
≈ 100 μm/ns [105] its value was fixed whereas the remaining four parameters were fitted.
The value of the charge mobility parameter μ0 was calculated for the temperature at which
the measurements were performed using the values given in [105]. It should be noted that
in the absence of trapping (λ � ω0) Eq. C.2 becomes just q(V ) = Q0 · ω(V )/ω0. That is
to say, the signal amplitude is proportional to the thickness of the depleted region.

C.4 Results

In order to apply the model, one needs to know the actual voltage applied to the sensor. In
the case of the DØ detector, there are close to 1000 modules and their operation voltages
are not all the same. For this reason, approximately 20 modules that were operated at
the same operation voltage were selected for this study. In addition, only modules from
the central barrels where selected, which ensured that all modules had the same type of
sensor. As an example, the obtained signals for different applied operation voltages for
the data accumulated at 1fb−1 are shown in Fig. C.2. The plotted signal amplitudes were
corrected for the path length of the particle within the silicon. For each setting, a Landau
function convolved with a Gaussian was fit to the signal shape. The width of the Landau
function was fixed to its most probable value (MPV) according to Bichsel [106] for the
actual thickness of the silicon sensor. One exception was the data taken at only 10% of
the nominal operation voltage. The Landau fit failed and only a Gaussian function was fit
to extract the mean value of the signal.

The signal heights versus the applied bias voltages for the three different data sets are
shown in Fig. C.3. The curves were fitted with the described model and the four parame-
ters were extracted. The results of the fits are summarised in Table C.2. As expected, the
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Figure C.2: Signal distributions.
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extracted depletion voltage Vdep decreases with increasing irradiation dose, or integrated
luminosity.

The results for the other fit parameters are not in agreement with the trend found in
[101]. It seems from the fit that the trapping does not increase with higher radiation dose.
Since no clear correlation between λ1 and the radiation dose is seen. These results suggest
that the model, though providing a good fit to the data is not applicable in our case. It
should also be mentioned, that the radiation doses investigated in [101] were a factor 100
higher than those accumulated in the DØ silicon detector.
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Figure C.3: Charge collection as a function of the applied bias voltage.

Table C.2: Fit results

Luminosity Vdep [V] Q0 [a.u.] λ0 λ1

0.25fb−1 16.5 10.0 334 7107
0.5fb−1 12.7 10.0 321 7429
1.0fb−1 12.2 10.1 459 7340
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working atmosphere and all the fruitfull discussions. Especially I want to thank Olaf for
proof-reading, Stefania and Johannes for the friendly atmosphere in the office and Matt
for the nice distraction during our climbing trips.

Finally, I want to thank my parents, my sister and my grandmother for their tireless
encouragement and support in all areas over all the years.

This work has been supported by the Swiss National Science Foundation and the Uni-
versity Research Fund.

149



CURRICULUM VITAE

PERSONAL INFORMATION

First Name: Ralf
Middle Name: Patrick
Last Name: Bernhard

EDUCATION

2002–2005 Dissertation in Physics, University of Zurich, Switzerland
Search for Rare Decays of the B0

s Meson
with the DØ Experiment

2002
2001–2002

1999–2000
1996–1999
1995–1996
1992–1995

Supervisor: Prof. Dr. Ulrich Straumann
Physics Diploma at University of Siegen, Germany
Diploma Thesis, University of Siegen, Germany
Eine neue Bestimmung der Formfaktoren im KL → πμν-Zerfall 
mit dem NA48-Detektor
Supervisor: Prof. Dr. Martin Holder
Exchange student at the ”Universita degli Studi di Pisa”, Italy 
Study of Physics, University of Siegen, Germany
Fulltime vocational school to qualify for University, Bühl, Germany 
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